Skip to main content Accessibility help
×
Home

Electron Channeling Contrast Imaging of Plastic Deformation Induced by Indentation in Polycrystalline Nickel

  • Shirin Kaboli (a1), Dina Goldbaum (a1), Richard R. Chromik (a1) and Raynald Gauvin (a1)

Abstract

Vickers microindentation and Berkovich nanoindentation tests were carried out on a polycrystalline nickel (Ni) bulk specimen. Electron channeling contrast imaging (ECCI) in conjunction with electron backscattered diffraction was used to image and characterize plastic deformation inside and around the indents using a field emission scanning electron microscope. The ECCI was performed with a 5 keV beam energy and 0° tilt specimen position. The strain field distribution, slip lines, and Taylor lattices were imaged on an indented surface. Orientation mapping was used to investigate the local crystallographic misorientation and identify specific ⟨110⟩ slip systems. An ion milling surface preparation technique was used to remove materials from the surface which permitted the study of deformed microstructure below the indent. A dislocation density of 1011 cm−2 was calculated based on the curvature of bend contours observed in the ECCI micrographs obtained from the Vickers indents. A yield strength of 500 MPa was calculated based on the size of the strain field measured from the ECCI micrographs of the nanoindents. The combination of ion milling, ECCI, and electron backscattered diffraction was shown to be beneficial to investigate the indentation-induced plastic deformation in a polycrystalline Ni bulk specimen.

Copyright

Corresponding author

* Corresponding author. raynald.gauvin@mcgill.ca

References

Hide All
Ahmed, J., Wilkinson, A.J. & Roberts, S.G. (1997). Characterizing dislocation structures in bulk fatigued copper single crystals using electron channelling contrast imaging (ECCI). Philos Mag Lett 76(4), 237245.
Ahmed, J., Wilkinson, A.J. & Roberts, S.G. (2001). Electron channelling contrast imaging characterization of dislocation structures associated with extrusion and intrusion systems and fatigue cracks in copper single crystals. Philos Mag A 81(6), 14731488.
Alcala, J., Mata, M. & Casals, O. (2006). The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity. Int J Solids Struct 43(20), 59946013.
Bahr, D.F. & Morris, D.J. (2008). Nanoindentation localized probes of mechanical behavior of materials. In Springer Handbook of Experimental Solid Mechanics, Sharpe, W.N. (Ed.), pp. 389407. Boston, MA: Springer.
Barnoush, A. (2012). Correlation between dislocation density and nanomechanical response during nanoindentation. Acta Mater 60(3), 12681277.
Barnoush, A., Welsch, M.T. & Vehoff, H. (2010). Correlation between dislocation density and pop-in phenomena in aluminum studied by nanoindentation and electron channeling contrast imaging. Scr Mater 63(5), 465468.
Belyansky, M., Domenicucci, A., Klymko, N., Li, J. & Madan, A. (2009). Strain characterization: Techniques and applications. Solid State Technol 52(2), 2630.
Betteridge, W. (1984). Metallography. In Nickel and Its Alloys, West, E.G. (Ed.), pp. 120137. Chichester, UK; New York: Ellis Horwood, Ltd.
Britton, T.B., Liang, H., Dunne, F.P.E. & Wilkinson, A.J. (2010). The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations. Proc R Soc London A Mat 466, 695719.
Chang, S.C. & Chen, H.C. (1995). The determination of f.c.c. crystal orientation by indentation. Acta Metall Mater 43(6), 25012505.
Crimp, M.A. (2006). Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast. Microsc Res Tech 69(5), 374381.
Crimp, M.A., Simkin, B.A. & Ng, B.C. (2001). Demonstration of the gbu=0 edge dislocation invisibility criterion for electron channelling contrast imaging. Philos Mag Lett 81(12), 833837.
Czanderna, A.W., Madey, T.E. & Powell, C.J. (1998). Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis. New York: Plenum Press.
Dieter, G.E. (1986). Mechanical Metallurgy. New York: McGraw-Hill.
Fischer-Cripps, A.C. (2011). Nanoindentation. New York: Springer.
Giannakopoulos, A.E., Larsson, P.L. & Vestergaard, R. (1994). Analysis of Vickers indentation. Int J Solid Struct 31(19), 26792708.
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. New York: Kluwer Academic/Plenum Publishers.
Gutierrez-Urrutia, I. & Raabe, D. (2011). Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.% Mn-0.6wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater 59(16), 64496462.
Gutierrez-Urrutia, I. & Raabe, D. (2012a). Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope. Scr Mater 66(6), 343346.
Gutierrez-Urrutia, I. & Raabe, D. (2012b). Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. Acta Mater 60(16), 57915802.
Gutierrez-Urrutia, I. & Raabe, D. (2013). Microbanding mechanism in an Fe-Mn-C high-Mn twinning-induced plasticity steel. Scr Mater 69(1), 5356.
Hernot, X. & Bartier, O. (2012). An expanding cavity model incorporating pile-up and sink-in effects. J Mater Res 27(1), 132140.
Hertzberg, R.W. (1989). Deformation and Fracture Mechanics of Engineering Materials. New York: Wiley.
Huber, A.J., Ziegler, A., Kock, T. & Hillenbrand, R. (2009). Infrared nanoscopy of strained semiconductors. Nat Nanotechnol 4(3), 153157.
Hull, D. (1965). Introduction to Dislocations. Oxford, New York: Pergamon Press.
Humphreys, C.J. (1979). The scattering of fast electrons by crystals. Rep Prog Phys 42(11), 18251887.
Hytch, M., Houdellier, F., Hue, F. & Snoeck, E. (2008). Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453(7198), 10861089.
Johnson, K.L. (1985). Contact Mechanics. Cambridge, New York: Cambridge University Press.
Joy, D.C. (1994). Channeling in and channeling out: The origins of electron backscattering and electron channeling contrast. In Proceedings of the 52nd Annual Meeting of the Microscopy Society of America, July 31, 1994–August 5, 1994, pp. 592593.
Joy, D.C., Newbury, D.E. & Davidson, D.L. (1982). Electron channeling patterns in the scanning electron microscope. J Appl Phys 53(8), 81122.
Joy, D.C., Newbury, D.E. & Hazzledine, P.M. (1972). Anomalous crystallographic contrast on rolled and annealed specimens. In Proceedings of the 5th Annual Scanning Electron Microscope Symposium Part I and Part II, Workshop on Biological Specimen Preparation for Scanning Electron Microscopy, Johari, O. & Corvin, I. (Eds.), pp. 97104. Chicago, IL: IIT Research Institute.
Kamaladasa, R.J., Jiang, W. & Picard, Y.N. (2011). Imaging dislocations in single-crystal SrTiO3 substrates by electron channeling. J Electron Mater 40(11), 22222227.
Kamaladasa, R.J. & Picard, Y.N. (2011). Basic principles and application of electron channeling in a scanning electron microscope for dislocation analysis. Microsc: Sci Tech Educ Appl 4, 15831590.
Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, J.N.A., Bahr, D. & Gerberich, W.W. (1998). Yield strength predictions from the plastic zone around nanocontacts. Acta Mater 47(1), 333343.
Kuhlmann-Wilsdorf, D. (1979). The LES theory of solid plasticity. In Dislocations in Solids, Nabarro, F.R.N. & Duesbery, M.S. (Eds.), pp. 213341. Amsterdam, New York: North-Holland Publishing Company.
Kum, O. (2005). Orientation effects of elastic-plastic deformation at surfaces: Nanoindentation of nickel single crystals. Mol Simul 31, 115121.
Mata, M. & Alcala, J. (2003). Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes. J Mater Res 18(7), 17051709.
Newbury, D.E., Joy, D.C., Echlin, P., Fiori, C.E. & Goldstein, J.I. (1986). Advanced Scanning Electron Microscopy and X-Ray Microanalysis, pp. 87145. New York: Plenum Press.
Ng, B.C., Simkin, B.A. & Crimp, M.A. (1998). Application of the electron channeling contrast imaging technique to the study of dislocations associated with cracks in bulk specimens. Ultramicroscopy 75(3), 137145.
Nibur, K.A. & Bahr, D.F. (2003). Identifying slip systems around indentations in FCC metals. Scr Mater 49(11), 10551060.
Oliver, W.C. & Pharr, G.M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6), 15641583.
Patterson, R.L. & Wilsdorf, H.G.F. (1968). Experimental observation of dislocations. In Fracture. An Advanced Treatise, Liebowitz, H. (Ed.), pp. 183242. New York: Academic Press.
Prior, D.J., Boyle, A.P., Brenker, F., Cheadle, M.C., Austin, D., Lopez, G., Peruzzo, L., Potts, G.J., Reddy, S., Spiess, R., Timms, N.E., Trimby, P., Wheeler, J. & Zetterstrom, L. (1999). The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84(11-12), 17411759.
Rasband, W.S. (1997–2012). ImageJ. Bethesda, MD: U.S. National Institutes of Health, http://imagej.nih.gov/ij/.
Schwartz, A.J., Kumar, M. & Adams, B.L. (2000). Electron Backscatter Diffraction in Materials Science. New York: Kluwer Academic.
Simkin, B.A. & Crimp, M.A. (1999). An experimentally convenient configuration for electron channeling contrast imaging. Ultramicroscopy 77(1-2), 6575.
Sugiyama, M. & Shibata, M. (2011). Application of scanning electron microscope to dislocation imaging in steel. JEOL News 46, 1116.
Tabor, D. (1951). The Hardness of Metals. Oxford: Clarendon Press.
Taylor, G.I. (1934). The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc Math Phys Eng Sci 145(855), 362387.
Ulirich, C., Schwarz, F., Franke, A., Marr, T., Rafaja, D., Kruger, L. & Freudenberger, J. (2012). The preparation of magnesium specimens for EBSD using ion polishing. Praktische Metallographie/Practical Metall 49(5), 290304.
Vander Voort, G.F. (1984). Metallography, Principles and Practice. New York: McGraw-Hill.
Wang, Y., Raabe, D., Kluber, C. & Roters, F. (2004). Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater 52(8), 22292238.
Weidner, A., Martin, S., Klemm, V., Martin, U. & Biermann, H. (2011). Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging. Scripta Mater 64(6), 513516.
Wells, O.C. (1999). Comparison of different models for the generation of electron backscattering patterns in the scanning electron microscope. Scanning 21(6), 368371.
Welsch, M.T., Henning, M., Marx, M. & Vehoff, H. (2007). Measuring the plastic zone size by orientation gradient mapping (OGM) electron channeling contrast imaging (ECCI). Adv Eng Mater 9(1-2), 3137.
Wilkinson, A.J. & Hirsch, P.B. (1997). Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28(4), 279308.
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy a Textbook for Materials Science. New York: Springer.
Zauter, R., Petry, F., Bayerlein, M., Sommer, C., Christ, H.J. & Mughrabi, H. (1992). Electron channelling contrast as a supplementary method for microstructural investigations in deformed metals. Philos Mag A 66(3), 425436.
Zhong, Y. & Zhu, T. (2008). Simulating nanoindentation and predicting dislocation nucleation using interatomic potential finite element method. Comput Method Appl Mech Eng 197(41-42), 31743181.

Keywords

Electron Channeling Contrast Imaging of Plastic Deformation Induced by Indentation in Polycrystalline Nickel

  • Shirin Kaboli (a1), Dina Goldbaum (a1), Richard R. Chromik (a1) and Raynald Gauvin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed