Skip to main content Accessibility help
×
Home

Extravascular CX3CR1+ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen

  • Deborah S. Barkauskas (a1), Teresa A. Evans (a2), Jay Myers (a1), Agne Petrosiute (a1), Jerry Silver (a2) and Alex Y. Huang (a1)...

Abstract

Within the central nervous system (CNS), antigen-presenting cells (APCs) play a critical role in orchestrating inflammatory responses where they present CNS-derived antigens to immune cells that are recruited from the circulation to the cerebrospinal fluid, parenchyma, and perivascular space. Available data indicate that APCs do so indirectly from outside of CNS vessels without direct access to luminal contents. Here, we applied high-resolution, dynamic intravital two-photon laser scanning microscopy to directly visualize extravascular CX3CR1+ APC behavior deep within undisrupted CNS tissues in two distinct anatomical sites under three different inflammatory stimuli. Surprisingly, we observed that CNS-resident APCs dynamically extend their cellular processes across an intact vessel wall into the vascular lumen with preservation of vessel integrity. While only a small number of APCs displayed intravascular extensions in intact, noninflamed vessels in the brain and the spinal cord, the frequency of projections increased over days in an experimental autoimmune encephalomyelitis model, whereas the number of projections remained stable compared to baseline days after tissue injury such as CNS tumor infiltration and aseptic spinal cord trauma. Our observation of this unique behavior by parenchyma CX3CR1+ cells in the CNS argues for further exploration into their functional role in antigen sampling and immune cell recruitment.

Copyright

Corresponding author

* Corresponding author. E-mail: alex.y.huang@case.edu

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
Almolda, B., Gonzalez, B. & Castellano, B. (2011). Antigen presentation in EAE: Role of microglia, macrophages and dendritic cells. Front Biosci 16, 11571171.
Aloisi, F. (2001). Immune function of microglia. Glia 36(2), 165179.
Bartholomaus, I., Kawakami, N., Odoardi, F., Schlager, C., Miljkovic, D., Ellwart, J.W., Klinkert, W.E., Flugel-Koch, C., Issekutz, T.B., Wekerle, H. & Flugel, A. (2009). Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269), 9498.
Carson, M.J., Doose, J.M., Melchior, B., Schmid, C.D. & Ploix, C.C. (2006). CNS immune privilege: Hiding in plain sight. Immunol Rev 213, 4865.
Chieppa, M., Rescigno, M., Huang, A.Y. & Germain, R.N. (2006). Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13), 28412852.
Choi, J.H., Do, Y., Cheong, C., Koh, H., Boscardin, S.B., Oh, Y.S., Bozzacco, L., Trumpfheller, C., Park, C.G. & Steinman, R.M. (2009). Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206(3), 497505.
Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., van der Valk, P., Beyer, C., Amor, S. & Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60(10), 14681480.
D'Agostino, P.M., Gottfried-Blackmore, A., Anandasabapathy, N. & Bulloch, K. (2012). Brain dendritic cells: Biology and pathology. Acta Neuropathol 124(5), 599614.
de Vos, A.F., van Meurs, M., Brok, H.P., Boven, L.A., Hintzen, R.Q., van der Valk, P., Ravid, R., Rensing, S., Boon, L., t Hart, B.A. & Laman, J.D. (2002). Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169(10), 54155423.
Drew, P.J., Shih, A.Y., Driscoll, J.D., Knutsen, P.M., Blinder, P., Davalos, D., Akassoglou, K., Tsai, P.S. & Kleinfeld, D. (2010). Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7(12), 981984.
Emmenlauer, M., Ronneberger, O., Ponti, A., Schwarb, P., Griffa, A., Filippi, A., Nitschke, R., Driever, W. & Burkhardt, H. (2009). XuvTools: Free, fast and reliable stitching of large 3D datasets. J Microscopy 233(1), 4260.
Engelhardt, B. & Ransohoff, R.M. (2012). Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends Immunol 33(12), 579589.
Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W. & Sanes, J.R. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1), 4151.
Galea, I., Bechmann, I. & Perry, V.H. (2007a). What is immune privilege (not)? Trends Immunol 28(1), 1218.
Galea, I., Bernardes-Silva, M., Forse, P.A., van Rooijen, N., Liblau, R.S. & Perry, V.H. (2007b). An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J Exp Med 204(9), 20232030.
Girard, J.P., Moussion, C. & Forster, R. (2012). HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12(11), 762773.
Goverman, J. (2009). Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6), 393407.
Guillemin, G.J. & Brew, B.J. (2004). Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75(3), 388397.
Huang, D., Shi, F.D., Jung, S., Pien, G.C., Wang, J., Salazar-Mather, T.P., He, T.T., Weaver, J.T., Ljunggren, H.G., Biron, C.A., Littman, D.R. & Ransohoff, R.M. (2006). The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 20(7), 896905.
Huang, J., Frischer, J.S., Serur, A., Kadenhe, A., Yokoi, A., McCrudden, K.W., New, T., O'Toole, K., Zabski, S., Rudge, J.S., Holash, J., Yancopoulos, G.D., Yamashiro, D.J. & Kandel, J.J. (2003). Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. PNAS 100(13), 77857790.
Iliff, J.J., Wang, M., Liao, Y., Plogg, B.A., Peng, W., Gundersen, G.A., Benveniste, H., Vates, G.E., Deane, R., Goldman, S.A., Nagelhus, E.A. & Nedergaard, M. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147), 147ra111.
Imai, Y. & Kohsaka, S. (2002). Intracellular signaling in M-CSF-induced microglia activation: Role of Iba1. Glia 40(2), 164174.
Ishii, T., Asai, T., Urakami, T. & Oku, N. (2010). Accumulation of macromolecules in brain parenchyma in acute phase of cerebral infarction/reperfusion. Brain Res 1321, 164168.
Itano, A.A. & Jenkins, M.K. (2003). Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4(8), 733739.
Jahrling, N., Becker, K. & Dodt, H.U. (2009). 3D-reconstruction of blood vessels by ultramicroscopy. Organogenesis 5(4), 227230.
Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A. & Littman, D.R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11), 41064114.
Kaminski, M., Bechmann, I., Pohland, M., Kiwit, J., Nitsch, R. & Glumm, J. (2012). Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J Leukoc Biol 92(1), 3139.
Kanazawa, H., Ohsawa, K., Sasaki, Y., Kohsaka, S. & Imai, Y. (2002). Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma-dependent pathway. J Biol Chem 277(22), 2002620032.
Khanna, K.M., Blair, D.A., Vella, A.T., McSorley, S.J., Datta, S.K. & Lefrancois, L. (2010). T cell and APC dynamics in situ control the outcome of vaccination. J Immunol 185(1), 239252.
Lassmann, H. (2011). Review: The architecture of inflammatory demyelinating lesions: Implications for studies on pathogenesis. Neuropathol Appl Neurobiol 37(7), 698710.
Lawson, L.J., Perry, V.H., Dri, P. & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1), 151170.
Lee, E.J., Rosenbaum, J.T. & Planck, S.R. (2010). Epifluorescence intravital microscopy of murine corneal dendritic cells. Invest Ophthalmol Vis Sci 51(4), 21012108.
Lelouard, H., Fallet, M., de Bovis, B., Méresse, S. & Gorvel, J.P. (2012). Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142(3), 592–601.e3.
Locatelli, G., Wortge, S., Buch, T., Ingold, B., Frommer, F., Sobottka, B., Kruger, M., Karram, K., Buhlmann, C., Bechmann, I., Heppner, F.L., Waisman, A. & Becher, B. (2012). Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci 15(4), 543550.
Marker, D.F., Tremblay, M.E., Lu, S.M., Majewska, A.K. & Gelbard, H.A. (2010). A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. J Vis Exp 43, e2059.
McGavern, D.B. & Kang, S.S. (2011). Illuminating viral infections in the nervous system. Nat Rev Immunol 11(5), 318329.
McMahon, E.J., Bailey, S.L. & Miller, S.D. (2006). CNS dendritic cells: Critical participants in CNS inflammation? Neurochem Int 49(2), 195203.
Mi, S., Hu, B., Hahm, K., Luo, Y., Kam Hui, E.S., Yuan, Q., Wong, W.M., Wang, L., Su, H., Chu, T.H., Guo, J., Zhang, W., So, K.F., Pepinsky, B., Shao, Z., Graff, C., Garber, E., Jung, V., Wu, E.X. & Wu, W. (2007). LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13(10), 12281233.
Mittelbronn, M., Dietz, K., Schluesener, H.J. & Meyermann, R. (2001). Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101(3), 249255.
Mostany, R. & Portera-Cailliau, C. (2008a). A craniotomy surgery procedure for chronic brain imaging. J Vis Exp 12, e680.
Mostany, R. & Portera-Cailliau, C. (2008b). A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp 12, e678.
Niess, J.H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B.A., Vyas, J.M., Boes, M., Ploegh, H.L., Fox, J.G., Littman, D.R. & Reinecker, H.C. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707), 254258.
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo . Science 308(5726), 13141318.
Pachner, A.R. (2011). Experimental models of multiple sclerosis. Curr Opin Neurol 24(3), 291299.
Pareek, T.K., Lam, E., Zheng, X., Askew, D., Kulkarni, A.B., Chance, M.R., Huang, A.Y., Cooke, K.R. & Letterio, J.J. (2010). Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. J Exp Med 207(11), 25072519.
Prodinger, C., Bunse, J., Krüger, M., Schiefenhövel, F., Brandt, C., Laman, J.D., Greter, M., Immig, K., Heppner, F., Becher, B. & Bechmann, I. (2011). CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 121(4), 445458.
Ransohoff, R.M. (2012). Animal models of multiple sclerosis: The good, the bad and the bottom line. Nat Neurosci 15(8), 10741077.
Ransohoff, R.M. & Cardona, A.E. (2010). The myeloid cells of the central nervous system parenchyma. Nature 468(7321), 253262.
Ransohoff, R.M. & Engelhardt, B. (2012). The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9), 623635.
Roozendaal, R., Mempel, T.R., Pitcher, L.A., Gonzalez, S.F., Verschoor, A., Mebius, R.E., von Andrian, U.H. & Carroll, M.C. (2009). Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30(2), 264276.
Saederup, N., Cardona, A.E., Croft, K., Mizutani, M., Cotleur, A.C., Tsou, C.L., Ransohoff, R.M. & Charo, I.F. (2010). Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5(10), e13693.
Sallusto, F., Impellizzieri, D., Basso, C., Laroni, A., Uccelli, A., Lanzavecchia, A. & Engelhardt, B. (2012). T-cell trafficking in the central nervous system. Immunol Rev 248(1), 216227.
Shen, Y., Tenney, A.P., Busch, S.A., Horn, K.P., Cuascut, F.X., Liu, K., He, Z., Silver, J. & Flanagan, J.G. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326(5952), 592596.
Stoll, G. & Jander, S. (1999). The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58(3), 233247.
Stromnes, I.M. & Goverman, J.M. (2006). Active induction of experimental allergic encephalomyelitis. Nat Protoc 1(4), 18101819.
Takano, K., Kojima, T., Go, M., Murata, M., Ichimiya, S., Himi, T. & Sawada, N. (2005). HLA-DR- and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem 53(5), 611619.
Thornton, E.E., Looney, M.R., Bose, O., Sen, D., Sheppard, D., Locksley, R., Huang, X. & Krummel, M.F. (2012). Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J Exp Med 209(6), 11831199.
Xu, H.T., Pan, F., Yang, G. & Gan, W.B. (2007). Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10(5), 549551.
Yang, G., Pan, F., Parkhurst, C.N., Grutzendler, J. & Gan, W.B. (2010). Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5(2), 201208.

Keywords

Type Description Title
VIDEO
Movies

Barkauskas et al. supplementary movie
Movie 1

 Video (7.7 MB)
7.7 MB
VIDEO
Movies

Barkauskas et al. supplementary movie
Movie 2

 Video (5.1 MB)
5.1 MB
VIDEO
Movies

Barkauskas et al. supplementary movie
Movie 3

 Video (6.6 MB)
6.6 MB
VIDEO
Movies

Barkauskas et al. supplementary movie
Movie 4

 Video (16.1 MB)
16.1 MB
PDF
Supplementary materials

Barkauskas et al. supplementary material
Supplementary figures

 PDF (695 KB)
695 KB

Extravascular CX3CR1+ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen

  • Deborah S. Barkauskas (a1), Teresa A. Evans (a2), Jay Myers (a1), Agne Petrosiute (a1), Jerry Silver (a2) and Alex Y. Huang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed