Skip to main content Accessibility help

Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond

  • Colin Ophus (a1)


Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.


Corresponding author

*Author for correspondence: Colin Ophus, E-mail:


Hide All
Allen, L, Faulkner, H & Leeb, H (2000). Inversion of dynamical electron diffraction data including absorption. Acta Crystallogr, Sect A: Found Crystallogr 56(2), 119126.
Ånes, HW, Andersen, IM & van Helvoort, AT (2018). Crystal phase mapping by scanning precession electron diffraction and machine learning decomposition. Microsc Microanal 24(S1), 586587.
Ansari, R, Beuville, E, Borer, K, Cenci, P, Clark, AG, Federspiel, A, Gildemeister, O, Gössling, C, Hara, K, Heijne, EHM, Jarron, P, Lariccia, P, Lisowski, B, Munday, DJ, Pal, T, Parker, MA, Redaelli, N, Scampoli, P, Simak, V, Singh, SL, Vallon-Hulth, T and Wells, PS (1989). The silicon detectors in the UA2 experiment. Nucl Instrum Methods Phys Res Sect A 279(1–2), 388395.
Barthel, J (2018). Dr. Probe: A software for high-resolution STEM image simulation. Ultramicroscopy 193, 1.
Bates, R & Rodenburg, J (1989). Sub-Ångström transmission microscopy: A Fourier transform algorithm for microdiffraction plane intensity information. Ultramicroscopy 31(3), 303307.
Béché, A, Rouviere, J, Clément, L & Hartmann, J (2009). Improved precision in strain measurement using nanobeam electron diffraction. Appl Phys Lett 95(12), 123114.
Bethe, H (1928). Theorie der beugung von elektronen an kristallen. Ann Phys 392(17), 55129.
Bogle, SN, Nittala, LN, Twesten, RD, Voyles, PM & Abelson, JR (2010). Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy. Ultramicroscopy 110(10), 12731278.
Bozzolo, N, Dewobroto, N, Wenk, H & Wagner, F (2007). Microstructure and microtexture of highly cold-rolled commercially pure titanium. J Mater Sci 42(7), 24052416.
Brodusch, N, Demers, H & Gauvin, R (2013). Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope. J Microsc 250(1), 114.
Brown, H, D'Alfonso, A, Chen, Z, Morgan, A, Weyland, M, Zheng, C, Fuhrer, M, Findlay, S & Allen, L (2016). Structure retrieval with fast electrons using segmented detectors. Phys Rev B 93(13), 134116.
Brown, HG, Chen, Z, Weyland, M, Ophus, C, Ciston, J, Allen, LJ & Findlay, SD (2018). Structure retrieval at atomic resolution in the presence of multiple scattering of the electron probe. Phys Rev Lett 121(26), 266102.
Brown, H, Ishikawa, R, Shibata, N, Ikuhara, Y, Allen, L & Findlay, S (2019). Large angle illumination enabling accurate structure reconstruction from thick samples in scanning transmission electron microscopy. Ultramicroscopy 197, 112121.
Bruma, A, Santiago, U, Alducin, D, Plascencia Villa, G, Whetten, RL, Ponce, A, Mariscal, M & José-Yacamán, M (2016). Structure determination of superatom metallic clusters using rapid scanning electron diffraction. J Phys Chem C 120(3), 19021908.
Brunetti, G, Robert, D, Bayle-Guillemaud, P, Rouviere, J, Rauch, E, Martin, J, Colin, J, Bertin, F & Cayron, C (2011). Confirmation of the domino-cascade model by LiFePO/FePO precession electron diffraction. Chem Mater 23(20), 45154524.
Bufford, D, Abdeljawad, F, Foiles, S & Hattar, K (2015). Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling. Appl Phys Lett 107(19), 191901.
Bustillo, KC, Panova, O, Chen, XC, Takacs, CJ, Ciston, J, Ophus, C, Balsara, NP & Minor, AM (2017). Nanobeam scanning diffraction for orientation mapping of polymers. Microsc Microanal 23(S1), 17821783.
Caswell, TA, Ercius, P, Tate, MW, Ercan, A, Gruner, SM & Muller, DA (2009). A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109(4), 304311.
Chapman, J, McFadyen, I & McVitie, S (1990). Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures. IEEE Trans Magn 26(5), 15061511.
Chen, Z, Weyland, M, Ercius, P, Ciston, J, Zheng, C, Fuhrer, M, D'Alfonso, A, Allen, L & Findlay, S (2016). Practical aspects of diffractive imaging using an atomic-scale coherent electron probe. Ultramicroscopy 169, 107121.
Clément, L, Pantel, R, Kwakman, LT & Rouvière, J (2004). Strain measurements by convergent-beam electron diffraction: The importance of stress relaxation in lamella preparations. Appl Phys Lett 85(4), 651653.
Cooper, D, Denneulin, T, Bernier, N, Béché, A & Rouvière, J-L (2016). Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron 80, 145165.
Cowley, J (1984). The use of scanning transmission electron microscopes to study surfaces and small particles. ACS Symp Ser 248, 353366.
Cowley, J (1986). Electron diffraction phenomena observed with a high resolution stem instrument. J Electron Microsc Tech 3(1), 2544.
Cowley, J (1996). Electron nanodiffraction: Progress and prospects. Microscopy 45(1), 310.
Cowley, J (2003). Ultra-high resolution with off-axis STEM holography. Ultramicroscopy 96(2), 163166.
Cowley, JM & Moodie, AF (1957). The scattering of electrons by atoms and crystals. I. a new theoretical approach. Acta Crystallogr 10(10), 609619.
Cowley, J & Ou, H-J (1989). Observation of microdiffraction patterns with a dedicated STEM instrument. J Electron Microsc Tech 11(2), 143154.
Cowley, J & Spence, JC (1979). Innovative imaging and microdiffraction in stem. Ultramicroscopy 2(9), 433438.
D'alfonso, A, Morgan, A, Yan, A, Wang, P, Sawada, H, Kirkland, A & Allen, L (2014). Deterministic electron ptychography at atomic resolution. Phys Rev B 89(6), 064101.
Darbal, A, Gemmi, M, Portillo, J, Rauch, E & Nicolopoulos, S (2012). Nanoscale automated phase and orientation mapping in the TEM. Micros Today 20(6), 3842.
Dekkers, N & De Lang, H (1974). Differential phase contrast in a STEM. Optik 41(4), 452456.
De Ruijter, W (1995). Imaging properties and applications of slow-scan charge-coupled device cameras suitable for electron microscopy. Micron 26(3), 247275.
Dey, S, Morawiec, A, Bouzy, E, Hazotte, A & Fundenberger, J-J (2006). A technique for determination of γ/γ interface relationships in a (α2 + γ) TiAl base alloy using TEM Kikuchi patterns. Mater Lett 60(5), 646650.
Dierickx, B, Meynants, G & Scheffer, D (1997). Near-100% fill factor standard CMOS active pixel. Proceedings 1997 CCD & AIS Workshop P, 1.
dos Reis, R, Yang, H, Ophus, C, Ercius, P, Bizarri, G, Perrodin, D, Shalapska, T, Bourret, E, Ciston, J & Dahmen, U (2018). Determination of the structural phase and octahedral rotation angle in halide perovskites. Appl Phys Lett 112(7), 071901.
Dwyer, C, Lazar, S, Chang, L & Etheridge, J (2012). Image formation in the scanning transmission electron microscope using object-conjugate detectors. Acta Crystallogr, Sect A 68(2), 196207.
Ebner, C, Sarkar, R, Rajagopalan, J & Rentenberger, C (2016). Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction. Ultramicroscopy 165, 5158.
Egerton, R (2019). Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 7287.
Eggeman, AS, Krakow, R & Midgley, PA (2015). Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis. Nat Commun 6, 7267.
Ercan, A, Tate, M & Gruner, S (2006). Analog pixel array detectors. J Synchrotron Radiat 13(2), 110119.
Etheridge, J, Lazar, S, Dwyer, C & Botton, GA (2011). Imaging high-energy electrons propagating in a crystal. Phys Rev Lett 106(16), 160802.
Fan, G & Ellisman, MH (1993). High-sensitivity lens-coupled slow-scan CCD camera for transmission electron microscopy. Ultramicroscopy 52(1), 2129.
Fang, S, Wen, Y, Allen, C, Ophus, C, Han, G, Kirkland, A, Kaxiras, E & Warner, J (2019). Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy. Nat Commun 10, 1127.
Fatermans, J, den Dekker, A, Müller-Caspary, K, Lobato, I, OLeary, C, Nellist, P & Van Aert, S (2018). Single atom detection from low contrast-to-noise ratio electron microscopy images. Phys Rev Lett 121(5), 056101.
Faulkner, H & Rodenburg, J (2004). Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Phys Rev Lett 93(2), 023903.
Favia, P, Popovici, M, Eneman, G, Wang, G, Bargallo-Gonzalez, M, Simoen, E, Menou, N & Bender, H (2010). Nano-beam diffraction: Crystal structure and strain analysis at the nanoscale. ECS Trans 33(11), 205219.
Favia, P, Gonzales, MB, Simoen, E, Verheyen, P, Klenov, D & Bender, H (2011). Nanobeam diffraction: Technique evaluation and strain measurement on complementary metal oxide semiconductor devices. J Electrochem Soc 158(4), H438H446.
Findlay, S, Shibata, N, Sawada, H, Okunishi, E, Kondo, Y & Ikuhara, Y (2010). Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110(7), 903923.
Florea, I, Ersen, O, Arenal, R, Ihiawakrim, D, Messaoudi, C, Chizari, K, Janowska, I & Pham-Huu, C (2012). 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography. J Am Chem Soc 134(23), 96729680.
Forbes, B, Martin, A, Findlay, S, DAlfonso, A & Allen, L (2010). Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation. Phys Rev B 82(10), 104103.
Françon, M (1954). Le Microscope à Contraste de Phase et le Microscope Interférentiel, vol. 1. Paris, France: Centre National de la Recherche Scientifique.
Frigo, SP, Levine, ZH & Zaluzec, NJ (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81(11), 21122114.
Fundenberger, J-J, Morawiec, A, Bouzy, E & Lecomte, J-S (2003). Polycrystal orientation maps from TEM. Ultramicroscopy 96(2), 127137.
Gallagher-Jones, M, Ophus, C, Bustillo, KC, Boyer, DR, Panova, O, Glynn, C, Zee, C-T, Ciston, J, Mancia, KC, Minor, AM & Rodriguez, JA (2019). Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction. Commun Biol 2, 26.
Gammer, C, Ozdol, VB, Liebscher, CH & Minor, AM (2015). Diffraction contrast imaging using virtual apertures. Ultramicroscopy 155, 110.
Gammer, C, Ophus, C, Pekin, TC, Eckert, J & Minor, AM (2018). Local nanoscale strain mapping of a metallic glass during in situ testing. Appl Phys Lett 112(17), 171905.
Gao, S, Wang, P, Zhang, F, Martinez, GT, Nellist, PD, Pan, X & Kirkland, AI (2017). Electron ptychographic microscopy for three-dimensional imaging. Nat Commun 8(1), 163.
Garner, A, Gholinia, A, Frankel, P, Gass, M, MacLaren, I & Preuss, M (2014). The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy. Acta Mater 80, 159171.
Goodman, P & Moodie, A (1974). Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method. Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr 30(2), 280290.
Goris, B, Turner, S, Bals, S & Van Tendeloo, G (2014). Three-dimensional valency mapping in ceria nanocrystals. ACS Nano 8(10), 1087810884.
Grieb, T, Krause, FF, Mahr, C, Zillmann, D, Müller-Caspary, K, Schowalter, M & Rosenauer, A (2017). Optimization of NBED simulations for disc-detection measurements. Ultramicroscopy 181, 5060.
Grieb, T, Krause, FF, Schowalter, M, Zillmann, D, Sellin, R, Müller-Caspary, K, Mahr, C, Mehrtens, T, Bimberg, D & Rosenauer, A (2018). Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence. Ultramicroscopy 190, 4557.
Grimley, ED, Schenk, T, Mikolajick, T, Schroeder, U & LeBeau, JM (2018). Atomic structure of domain and interphase boundaries in ferroelectric HfO. Adv Mater Interfaces 5(5), 1701258.
Guo, Q & Thompson, GB (2018). In-situ indentation and correlated precession electron diffraction analysis of a polycrystalline Cu thin film. JOM 70 (7), 17.
Guzzinati, G, Ghielens, W, Mahr, C, Béché, A, Rosenauer, A, Calders, T & Verbeeck, J (2019). Electron bessel beam diffraction for precise and accurate nanoscale strain mapping. arXiv preprint arXiv:1902.06979.
Haas, B, Thomas, C, Jouneau, P-H, Bernier, N, Meunier, T, Ballet, P & Rouvière, J-L (2017). High precision strain mapping of topological insulator HgTe/CdTe. Appl Phys Lett 110(26), 263102.
Haas, B, Rouvière, J-L, Boureau, V, Berthier, R & Cooper, D (2018). Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy. Ultramicroscopy 198, 5872.
Hachtel, JA, Idrobo, JC & Chi, M (2018). Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv Struct Chemi Imaging 4(1), 10.
Haider, M, Epstein, A, Jarron, P & Boulin, C (1994). A versatile, software configurable multichannel STEM detector for angle-resolved imaging. Ultramicroscopy 54(1), 4159.
Hamaoka, T, Hashimoto, A, Mitsuishi, K & Takeguchi, M (2018). 4D-data acquisition in scanning confocal electron microscopy for depth-sectioned imaging. e-J Surf Sci Nanotechnol 16, 247252.
Hammel, M & Rose, H (1995). Optimum rotationally symmetric detector configurations for phase-contrast imaging in scanning transmission electron microscopy. Ultramicroscopy 58(3–4), 403415.
Han, Y, Nguyen, K, Cao, M, Cueva, P, Xie, S, Tate, M, Purohit, P, Gruner, S, Park, J & Muller, D (2018). Strain mapping of two-dimensional heterostructures with subpicometer precision. Nano Lett 18(6), 3746.
Harvey, TR, Yasin, FS, Chess, JJ, Pierce, JS, dos Reis, RMS, Özdöl, VB, Ercius, P, Ciston, J, Feng, W, Kotov, NA, McMorran, BJ & Ophus, C (2018). Interpretable and efficient interferometric contrast in scanning transmission electron microscopy with a diffraction-grating beam splitter. Phys Rev Appl 10, 061001.
Hashimoto, A, Shimojo, M, Mitsuishi, K & Takeguchi, M (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106(8), 086101.
Hawkes, P (1982). Is the STEM a ptychograph? Ultramicroscopy 9(1–2), 2730.
Hegerl, R & Hoppe, W (1970). Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld. Berichte der Bunsengesellschaft für Physikalische Chemie 74(11), 11481154.
Hilke, S, Kirschbaum, J, Hieronymus-Schmidt, V, Radek, M, Bracht, H, Wilde, G & Peterlechner, M (2019). Analysis of medium-range order based on simulated segmented ring detector STEM-images: Amorphous Si. Ultramicroscopy 200, 169179.
Hirata, A, Guan, P, Fujita, T, Hirotsu, Y, Inoue, A, Yavari, AR, Sakurai, T & Chen, M (2011). Direct observation of local atomic order in a metallic glass. Nat Mater 10(1), 28.
Hoppe, W (1969 a). Beugung im inhomogenen primärstrahlwellenfeld. I. prinzip einer phasenmessung von elektronenbeungungsinterferenzen. Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr 25(4), 495501.
Hoppe, W (1969 b). Beugung im inhomogenen primärstrahlwellenfeld. III. amplituden-und phasenbestimmung bei unperiodischen objekten. Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr 25(4), 508514.
Hoppe, W & Strube, G (1969). Beugung in inhomogenen primärstrahlenwellenfeld. II. lichtoptische analogieversuche zur phasenmessung von gitterinterferenzen. Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr 25(4), 502507.
Hou, J, Ashling, CW, Collins, SM, Krajnc, A, Zhou, C, Longley, L, Johnstone, D, Chater, PA, Li, S, Coudert, F-X, Keen, DA, Midgley, PA, Mali, G, Chen, V & Bennett, T (2018). Metal-organic framework crystal-glass composites. ChemRxiv, 7093862v1.
Hüe, F, Rodenburg, J, Maiden, A, Sweeney, F & Midgley, P (2010). Wave-front phase retrieval in transmission electron microscopy via ptychography. Phys Rev B 82(12), 121415.
Humphreys, C (1979). The scattering of fast electrons by crystals. Rep Prog Phys 42(11), 1825.
Humphry, M, Kraus, B, Hurst, A, Maiden, A & Rodenburg, J (2012). Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat Commun 3, 730.
Hwang, J, Melgarejo, Z, Kalay, Y, Kalay, I, Kramer, MJ, Stone, D & Voyles, P (2012). Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys Rev Lett 108(19), 195505.
Hwang, J, Zhang, JY, DAlfonso, AJ, Allen, LJ & Stemmer, S (2013). Three-dimensional imaging of individual dopant atoms in SrTiO3. Phys Rev Lett 111(26), 266101.
Hÿtch, MJ & Minor, AM (2014). Observing and measuring strain in nanostructures and devices with transmission electron microscopy. MRS Bull 39(2), 138146.
Idrissi, H, Kobler, A, Amin-Ahmadi, B, Coulombier, M, Galceran, M, Raskin, J-P, Godet, S, Kübel, C, Pardoen, T & Schryvers, D (2014). Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing. Appl Phys Lett 104(10), 101903.
Im, S, Chen, Z, Johnson, JM, Zhao, P, Yoo, GH, Park, ES, Wang, Y, Muller, DA & Hwang, J (2018). Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy. Ultramicroscopy 195, 189193.
Izadi, E, Darbal, A, Sarkar, R & Rajagopalan, J (2017). Grain rotations in ultrafine-grained aluminum films studied using in situ tem straining with automated crystal orientation mapping. Mater Des 113, 186194.
Jarausch, K, Thomas, P, Leonard, DN, Twesten, R & Booth, CR (2009). Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109(4), 326337.
Jiang, Y, Chen, Z, Han, Y, Deb, P, Gao, H, Xie, S, Purohit, P, Tate, MW, Park, J, Gruner, SM et al. (2018). Electron ptychography of 2D materials to deep sub-Ångström resolution. Nature 559(7714), 343.
Johnson, IJ, Bustillo, KC, Ciston, J, Draney, BR, Ercius, P, Fong, E, Goldschmidt, A, Joseph, JM, Lee, JR, Minor, AM, et al. (2018). A next generation electron microscopy detector aimed at enabling new scanning diffraction techniques and online data reconstruction. Microsc Microanal 24(S1), 166167.
Jones, L & Nellist, PD (2013). Advances in 2D, 3D and 4D STEM image data analysis. Microsc Microanal 19(S2), 770771.
Jones, P, Rackham, G & Steeds, JW (1977). Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc R Soc London, Ser A 354(1677), 197222.
Kaufman, M, Pearson, D & Fraser, H (1986). The use of convergent-beam electron diffraction to determine local lattice distortions in nickel-base superalloys. Philos Mag A 54(1), 7992.
Kikuchi, S (1928). Elektronenbeugung an glimmerplättchen. Jpn J Phys 5, 23.
Kimoto, K & Ishizuka, K (2011). Spatially resolved diffractometry with atomic-column resolution. Ultramicroscopy 111(8), 11111116.
Kobler, A, Kashiwar, A, Hahn, H & Kübel, C (2013). Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy 128, 6881.
Koch, CT (2011). Aberration-compensated large-angle rocking-beam electron diffraction. Ultramicroscopy 111(7), 828840.
Koch, CT, Özdöl, VB & Ishizuka, K (2012). Quantitative four-dimensional electron diffraction in the TEM. Microsc Anal 26 (4), 58.
Konnert, J & D'Antonio, P (1986). Image reconstruction using electron microdiffraction patterns from overlapping regions. Ultramicroscopy 19(3), 267277.
Krajnak, M, McGrouther, D, Maneuski, D, O'Shea, V & McVitie, S (2016). Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast. Ultramicroscopy 165, 4250.
Lazar, S, Etheridge, J, Dwyer, C, Freitag, B & Botton, GA (2011). Atomic resolution imaging using the real-space distribution of electrons scattered by a crystalline material. Acta Crystallogr, Sect A: Found Crystallogr 67(5), 487490.
Lazić, I, Bosch, EG & Lazar, S (2016). Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265280.
LeBeau, JM, Findlay, SD, Wang, X, Jacobson, AJ, Allen, LJ & Stemmer, S (2009). High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment. Phys Rev B 79(21), 214110.
LeBeau, JM, Findlay, SD, Allen, LJ & Stemmer, S (2010). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.
Lee, Z, Kaiser, U & Rose, H (2019). Prospects of annular differential phase contrast applied for optical sectioning in STEM. Ultramicroscopy 196, 5866.
Li, X, Mooney, P, Zheng, S, Booth, CR, Braunfeld, MB, Gubbens, S, Agard, DA & Cheng, Y (2013). Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10(6), 584.
Li, X, Dyck, OE, Oxley, MP, Lupini, AR, McInnes, L, Healy, J, Jesse, S & Kalinin, SV (2019). Manifold learning of four-dimensional scanning transmission electron microscopy. NPJ Comput Mater 5(1), 5.
Liu, J, Li, K, Pandey, S, Benistant, F, See, A, Zhou, M, Hsia, L, Schampers, R & Klenov, DO (2008). Strain relaxation in transistor channels with embedded epitaxial silicon germanium source/drain. Appl Phys Lett 93(22), 221912.
Liu, A, Neish, M, Stokol, G, Buckley, G, Smillie, L, de Jonge, M, Ott, R, Kramer, M & Bourgeois, L (2013). Systematic mapping of icosahedral short-range order in a melt-spun ZrCu metallic glass. Phys Rev Lett 110(20), 205505.
Liu, AC, Lumpkin, GR, Petersen, TC, Etheridge, J & Bourgeois, L (2015). Interpretation of angular symmetries in electron nanodiffraction patterns from thin amorphous specimens. Acta Crystallogr, Sect A: Found Adv 71(5), 473482.
Lozano, JG, Martinez, GT, Jin, L, Nellist, PD & Bruce, PG (2018). Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett 18(11), 68506855.
Lubk, A & Zweck, J (2015). Differential phase contrast: An integral perspective. Phys Rev A 91(2), 023805.
Lupini, AR, Chi, M, Kalinin, SV, Borisevich, AY, Idrobo, JC & Jesse, S (2015). Ptychographic imaging in an aberration corrected stem. Microsc Microanal 21(S3), 12191220.
MacArthur, K, Pennycook, T, Okunishi, E, D'Alfonso, A, Lugg, N, Allen, L, Nellist, P, et al. (2013). Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images. Ultramicroscopy 133, 109119.
MacLaren, I, Villaurrutia, R & Peláiz-Barranco, A (2010). Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3. J Appl Phys 108(3), 034109.
Mahr, C, Müller-Caspary, K, Grieb, T, Schowalter, M, Mehrtens, T, Krause, FF, Zillmann, D & Rosenauer, A (2015). Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction. Ultramicroscopy 158, 3848.
Mahr, C, Müller-Caspary, K, Ritz, R, Simson, M, Grieb, T, Schowalter, M, Krause, FF, Lackmann, A, Soltau, H, Wittstock, A, et al. (2019). Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction. Ultramicroscopy 196, 7482.
Maiden, AM & Rodenburg, JM (2009). An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10), 12561262.
Maiden, AM, Humphry, MJ & Rodenburg, J (2012). Ptychographic transmission microscopy in three dimensions using a multi-slice approach. JOSA A 29(8), 16061614.
McMullan, G, Faruqi, A, Clare, D & Henderson, R (2014). Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156163.
Mendis, SK, Kemeny, SE, Gee, RC, Pain, B, Staller, CO, Kim, Q & Fossum, ER (1997). CMOS active pixel image sensors for highly integrated imaging systems. IEEE J Solid-State Circuits 32(2), 187197.
Midgley, PA & Eggeman, AS (2015). Precession electron diffraction–a topical review. IUCrJ 2(1), 126136.
Midgley, PA & Thomas, JM (2014). Multi-dimensional electron microscopy. Angew Chem, Int Ed 53(33), 86148617.
Milazzo, A-C, Leblanc, P, Duttweiler, F, Jin, L, Bouwer, JC, Peltier, S, Ellisman, M, Bieser, F, Matis, HS, Wieman, H, et al. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104(2), 152159.
Möbus, G & Nufer, S (2003). Nanobeam propagation and imaging in a FEGTEM/STEM. Ultramicroscopy 96(3–4), 285298.
Mohammadi, E, Zhao, C, Meng, Y, Qu, G, Zhang, F, Zhao, X, Mei, J, Zuo, J-M, Shukla, D & Diao, Y (2017). Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nat Commun 8, 16070.
Möllenstedt, G & Düker, H (1956). Beobachtungen und messungen an biprisma-interferenzen mit elektronenwellen. Z Phys 145(3), 377397.
Morawiec, A, Bouzy, E, Paul, H & Fundenberger, J-J (2014). Orientation precision of TEM-based orientation mapping techniques. Ultramicroscopy 136, 107118.
Müller, K, Rosenauer, A, Schowalter, M, Zweck, J, Fritz, R & Volz, K (2012 a). Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy. Microsc Microanal 18(5), 9951009.
Müller, K, Ryll, H, Ordavo, I, Ihle, S, Strüder, L, Volz, K, Zweck, J, Soltau, H & Rosenauer, A (2012 b). Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Appl Phys Lett 101(21), 212110.
Müller, K, Krause, FF, Béché, A, Schowalter, M, Galioit, V, Löffler, S, Verbeeck, J, Zweck, J, Schattschneider, P & Rosenauer, A (2014). Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat Commun 5, 5653.
Müller-Caspary, K, Oelsner, A & Potapov, P (2015). Two-dimensional strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector. Appl Phys Lett 107(7), 072110.
Müller-Caspary, K, Krause, FF, Grieb, T, Löffler, S, Schowalter, M, Béché, A, Galioit, V, Marquardt, D, Zweck, J, Schattschneider, P, et al. (2017). Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy 178, 6280.
Müller-Caspary, K, Duchamp, M, Rösner, M, Migunov, V, Winkler, F, Yang, H, Huth, M, Ritz, R, Simson, M, Ihle, S, et al. (2018 a). Atomic-scale quantification of charge densities in two-dimensional materials. Phys Rev B 98(12), 121408.
Müller-Caspary, K, Krause, FF, Winkler, F, Béché, A, Verbeeck, J, VanAert, S & Rosenauer, A (2018 b). Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose. Ultramicroscopy 203, 95104.
Nellist, P, McCallum, B & Rodenburg, JM (1995). Resolution beyond the “information limit” in transmission electron microscopy. Nature 374(6523), 630.
Nellist, P, Behan, G, Kirkland, A & Hetherington, C (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89(12), 124105.
Nord, M, Krajnak, M, Bali, R, Hlawacek, G, Liersch, V, Fassbender, J, McVitie, S, Paterson, GW, Maclaren, I & McGrouther, D (2016). Developing rapid and advanced visualisation of magnetic structures using 2-D pixelated STEM detectors. Microsc Microanal 22(S3), 530531.
Nord, M, Ross, A, McGrouther, D, Barthel, J, Moreau, M, Hallsteinsen, I, Tybell, T & MacLaren, I (2018). 3D sub-nanoscale imaging of unit cell doubling due to octahedral tilting and cation modulation in strained perovskite thin films. arXiv preprint arXiv:1810.07501.
Oelerich, JO, Duschek, L, Belz, J, Beyer, A, Baranovskii, SD & Volz, K (2017). STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens. Ultramicroscopy 177, 9196.
Ophus, C (2017). A fast image simulation algorithm for scanning transmission electron microscopy. Adv Struct Chem Imaging 3(1), 13.
Ophus, C, Ercius, P, Sarahan, M, Czarnik, C & Ciston, J (2014). Recording and using 4D-STEM datasets in materials science. Microsc Microanal 20(S3), 6263.
Ophus, C, Ciston, J, Pierce, J, Harvey, TR, Chess, J, McMorran, BJ, Czarnik, C, Rose, HH & Ercius, P (2016). Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry. Nat Commun 7, 10719.
Ophus, C, Ercius, P, Huijben, M & Ciston, J (2017 a). Non-spectroscopic composition measurements of SrTiO-LaSr0.3MnO multilayers using scanning convergent beam electron diffraction. Appl Phys Lett 110(6), 063102.
Ophus, C, Yang, H, dos Reis, R, Meng, Y, Pryor, A, Miao, J, Pekin, TC, Minor, AM, Johnson, I, Denes, P, et al. (2017 b). Computational methods for large scale scanning transmission electron microscopy (STEM) experiments and simulations. Microsc Microanal 23(S1), 162163.
Ozdol, V, Gammer, C, Jin, X, Ercius, P, Ophus, C, Ciston, J & Minor, A (2015). Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl Phys Lett 106(25), 253107.
Panova, O, Chen, XC, Bustillo, KC, Ophus, C, Bhatt, MP, Balsara, N & Minor, AM (2016). Orientation mapping of semicrystalline polymers using scanning electron nanobeam diffraction. Micron 88, 3036.
Pekin, TC, Gammer, C, Ciston, J, Minor, AM & Ophus, C (2017). Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping. Ultramicroscopy 176, 170176.
Pekin, TC, Gammer, C, Ciston, J, Ophus, C & Minor, AM (2018). In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel. Scr Mater 146, 8790.
Pelz, PM, Qiu, WX, Bücker, R, Kassier, G & Miller, RD (2017). Low-dose cryo electron ptychography via non-convex Bayesian optimization. Sci Rep 7(1), 9883.
Pennycook, SJ & Nellist, PD (2011). Scanning Transmission Electron Microscopy. New York, USA: Springer-Verlag.
Pennycook, TJ, Lupini, AR, Yang, H, Murfitt, MF, Jones, L & Nellist, PD (2015). Efficient phase contrast imaging in stem using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. Ultramicroscopy 151, 160167.
Phillips, JC (1979). Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J Non-Cryst Solids 34(2), 153181.
Pryor, A, Ophus, C & Miao, J (2017). A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy. Adv Struct Chem Imaging 3(1), 15.
Putkunz, CT, DAlfonso, AJ, Morgan, AJ, Weyland, M, Dwyer, C, Bourgeois, L, Etheridge, J, Roberts, A, Scholten, RE, Nugent, KA, et al. (2012). Atom-scale ptychographic electron diffractive imaging of boron nitride cones. Phys Rev Lett 108(7), 073901.
Rauch, E & Dupuy, L (2005). Rapid spot diffraction patterns identification through template matching. Arch Metall Mater 50, 8799.
Rauch, E & Véron, M (2014). Automated crystal orientation and phase mapping in TEM. Mater Charact 98, 19.
Rauch, EF, Portillo, J, Nicolopoulos, S, Bultreys, D, Rouvimov, S & Moeck, P (2010). Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr 225(2–3), 103109.
Reisinger, M, Zalesak, J, Daniel, R, Tomberger, M, Weiss, J, Darbal, A, Petrenec, M, Zechner, J, Daumiller, I, Ecker, W, Sartory, B & Keckes, J (2016). Cross-sectional stress distribution in AlGaN heterostructure on Si (111) substrate characterized by ion beam layer removal method and precession electron diffraction. Mater Des 106, 476481.
Rodenburg, J (1999). Measurement of higher-order correlation functions in amorphous materials via coherent microdiffraction. Electron Microscopy and Analysis 1999: Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, University of Sheffield, 24–27 August 1999, 161:145.
Rodenburg, J & Bates, R (1992). The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil Trans R Soc London, Ser A 339(1655), 521553.
Rodenburg, JM & Faulkner, HM (2004). A phase retrieval algorithm for shifting illumination. Appl Phys Lett 85(20), 47954797.
Rodenburg, J, McCallum, B & Nellist, P (1993). Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy 48(3), 304314.
Ronchi, V (1964). Forty years of history of a grating interferometer. Appl Opt 3(4), 437451.
Rose, H (1974). Phase contrast in scanning transmission electron microscopy. Optik 39(4), 416436.
Rose, H (1977). Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2(0), 251267.
Rottmann, PF & Hemker, KJ (2018). Nanoscale elastic strain mapping of polycrystalline materials. Mater Res Lett 6(4), 249254.
Rouviere, J-L, Béché, A, Martin, Y, Denneulin, T & Cooper, D (2013). Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl Phys Lett 103(24), 241913.
Rozeveld, S & Howe, J (1993). Determination of multiple lattice parameters from convergent-beam electron diffraction patterns. Ultramicroscopy 50(1), 4156.
Ryll, H, Simson, M, Hartmann, R, Holl, P, Huth, M, Ihle, S, Kondo, Y, Kotula, P, Liebel, A, Müller-Caspary, K, et al. (2016). A pnCCD-based, fast direct single electron imaging camera for TEM and STEM. J Instrum 11(04), P04006.
Schaffer, B, Gspan, C, Grogger, W, Kothleitner, G & Hofer, F (2008). Hyperspectral imaging in TEM: New ways of information extraction and display. Microsc Microanal 14(S2), 7071.
Schwarzer, R (1990). Measurement of local textures with transmission and scanning electron microscopes. Texture, Stress, Microstruct 13(1), 1530.
Schwarzer, RA & Sukkau, J (1998). Automated crystal orientation mapping (ACOM) with a computer-controlled TEM by interpreting transmission Kikuchi patterns. Mater Sci Forum 273, 215222.
Schwarzhuber, F, Melzl, P, Pöllath, S & Zweck, J (2018). Introducing a non-pixelated and fast centre of mass detector for differential phase contrast microscopy. Ultramicroscopy 192, 2128.
Seyring, M, Song, X & Rettenmayr, M (2011). Advance in orientation microscopy: Quantitative analysis of nanocrystalline structures. ACS Nano 5(4), 25802586.
Shibata, N, Findlay, SD, Kohno, Y, Sawada, H, Kondo, Y & Ikuhara, Y (2012). Differential phase-contrast microscopy at atomic resolution. Nat Phys 8(8), 611.
Shukla, AK, Ophus, C, Gammer, C & Ramasse, Q (2016). Study of structure of Li-and Mn-rich transition metal oxides using 4D-STEM. Microsc Microanal 22(S3), 494495.
Shukla, AK, Ramasse, QM, Ophus, C, Kepaptsoglou, DM, Hage, FS, Gammer, C, Bowling, C, Gallegos, PAH & Venkatachalam, S (2018). Effect of composition on the structure of lithium-and manganese-rich transition metal oxides. Energy Environ Sci 11(4), 830840.
Song, B, Ding, Z, Allen, CS, Sawada, H, Zhang, F, Pan, X, Warner, J, Kirkland, AI & Wang, P (2018). Hollow electron ptychographic diffractive imaging. Phys Rev Lett 121(14), 146101.
Sourty, E, Stanley, J & Freitag, B (2009). Using stem with quasi-parallel illumination and an automated peak-finding routine for strain analysis at the nanometre scale. Physical and Failure Analysis of Integrated Circuits, 2009. IPFA 2009. 16th IEEE International Symposium on the, 479484.
Spence, J (1998). Direct inversion of dynamical electron diffraction patterns to structure factors. Acta Crystallogr, Sect A 54(1), 718.
Steeds, J (1979). Convergent beam electron diffraction. In Introduction to Analytical Electron Microscopy. Boston, MA, USA: Springer, pp. 387422.
Stevens, A, Yang, H, Hao, W, Jones, L, Ophus, C, Nellist, PD & Browning, ND (2018). Subsampled STEM-ptychography. Appl Phys Lett 113(3), 033104.
Sunde, JK, Marioara, CD, van Helvoort, AT & Holmestad, R (2018). The evolution of precipitate crystal structures in an Al-Mg-Si (-Cu) alloy studied by a combined HAADF-STEM and SPED approach. Mater Charact 142, 458469.
Tao, J, Niebieskikwiat, D, Varela, M, Luo, W, Schofield, M, Zhu, Y, Salamon, MB, Zuo, J-M, Pantelides, ST & Pennycook, SJ (2009). Direct imaging of nanoscale phase separation in La0.55Ca 0.45MnO3: Relationship to colossal magnetoresistance. Phys Rev Lett 103(9), 097202.
Tao, J, Sun, K, Yin, W-G, Wu, L, Xin, H, Wen, J, Luo, W, Pennycook, S, Tranquada, J & Zhu, Y (2016). Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3. Sci Rep 6, 37624.
Tate, MW, Purohit, P, Chamberlain, D, Nguyen, KX, Hovden, R, Chang, CS, Deb, P, Turgut, E, Heron, JT, Schlom, DG, Ralph, DC, Fuchs, GD, Shanks, KS, Philipp, HT, Muller, DA & Gruner, SM (2016). High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc Microanal 22(1), 237249.
Thibault, P & Menzel, A (2013). Reconstructing state mixtures from diffraction measurements. Nature 494(7435), 68.
Tian, L & Volkert, C (2018). Measuring structural heterogeneities in metallic glasses using transmission electron microscopy. Metals (Basel) 8(12), 1085.
Treacy, M & Gibson, J (1996). Variable coherence microscopy: A rich source of structural information from disordered materials. Acta Crystallogr, Sect A 52(2), 212220.
Trimby, PW (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.
Uesugi, F, Hokazono, A & Takeno, S (2011). Evaluation of two-dimensional strain distribution by STEM/NBD. Ultramicroscopy 111(8), 995998.
Usuda, K, Mizuno, T, Tezuka, T, Sugiyama, N, Moriyama, Y, Nakaharai, S & Takagi, S (2004). Strain relaxation of strained-Si layers on SiGe-on-insulator (SGOI) structures after mesa isolation. Appl Surf Sci 224, 113116.
Vigouroux, M, Delaye, V, Bernier, N, Cipro, R, Lafond, D, Audoit, G, Baron, T, Rouvière, J, Martin, M, Chenevier, B, et al. (2014). Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera. Appl Phys Lett 105(19), 191906.
Vincent, R & Midgley, P (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53(3), 271282.
Voyles, P & Muller, D (2002). Fluctuation microscopy in the STEM. Ultramicroscopy 93(2), 147159.
Waddell, E & Chapman, J (1979). Linear imaging of strong phase objects using asymmetrical detectors in stem. Optik 54(2), 8396.
Wang, F, Pennington, RS & Koch, CT (2016). Inversion of dynamical scattering from large-angle rocking-beam electron diffraction patterns. Phys Rev Lett 117(1), 015501.
Wang, P, Zhang, F, Gao, S, Zhang, M & Kirkland, AI (2017). Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals. Sci Rep 7(1), 2857.
Wang, Y, Suyolcu, YE, Salzberger, U, Hahn, K, Srot, V, Sigle, W & van Aken, PA (2018). Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging. Microscopy 67(suppl_1), i114i122.
Watanabe, M & Williams, D (2007). Development of diffraction imaging for orientation analysis of grains in scanning transmission electron microscopy. Microsc Microanal 13(S02), 962963.
Webb, RH (1996). Confocal optical microscopy. Rep Prog Phys 59(3), 427.
Wehmeyer, G, Bustillo, KC, Minor, AM & Dames, C (2018). Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy. Appl Phys Lett 113(25), 253101.
Williamson, M, van Dooren, P & Flanagan, J (2015). Quantitative analysis of the accuracy and sensitivity of strain measurements from nanobeam electron diffraction. IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 197200.
Wright, SI, Nowell, MM & Field, DP (2011). A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17(3), 316329.
Xu, W & LeBeau, JM (2018). A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns. Ultramicroscopy 188, 5969.
Yadav, AK, Nguyen, KX, Hong, Z, Garcia-Fernandez, P, Aguado-Puente, P, Nelson, CT, Das, S, Prasad, B, Kwon, D, Cheema, S, Khan, AI, Hu, C, Iniguez, J, Junquera, J, Chen, L-Q, Muller, DA, Ramesh, R & Salahuddin, S (2019). Spatially resolved steady-state negative capacitance. Nature 565, 468471.
Yang, H, Jones, L, Ryll, H, Simson, M, Soltau, H, Kondo, Y, Sagawa, R, Banba, H, MacLaren, I & Nellist, P (2015 a). 4D STEM: High efficiency phase contrast imaging using a fast pixelated detector. J Phys Conf Ser 644(1), 012032.
Yang, H, Pennycook, TJ & Nellist, PD (2015 b). Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions. Ultramicroscopy 151, 232239.
Yang, H, Ercius, P, Nellist, PD & Ophus, C (2016 a). Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope. Ultramicroscopy 171, 117125.
Yang, H, Rutte, R, Jones, L, Simson, M, Sagawa, R, Ryll, H, Huth, M, Pennycook, T, Green, M, Soltau, H, et al. (2016 b). Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat Commun 7, 12532.
Yang, H, MacLaren, I, Jones, L, Martinez, GT, Simson, M, Huth, M, Ryll, H, Soltau, H, Sagawa, R, Kondo, Y, et al. (2017). Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution. Ultramicroscopy 180, 173179.
Yankovich, AB, Berkels, B, Dahmen, W, Binev, P, Sanchez, SI, Bradley, SA, Li, A, Szlufarska, I & Voyles, PM (2014). Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat Commun 5, 4155.
Yasin, FS, Harada, K, Shindo, D, Shinada, H, McMorran, BJ & Tanigaki, T (2018 a). A tunable path-separated electron interferometer with an amplitude-dividing grating beamsplitter. Appl Phys Lett 113(23), 233102.
Yasin, FS, Harvey, TR, Chess, JJ, Pierce, JS & McMorran, BJ (2018 b). Path-separated electron interferometry in a scanning transmission electron microscope. J Phys D: Appl Phys 51(20), 205104.
Yasin, FS, Harvey, TR, Chess, JJ, Pierce, JS, Ophus, C, Ercius, P & McMorran, BJ (2018 c). Probing light atoms at subnanometer resolution: Realization of scanning transmission electron microscope holography. Nano Lett 18(11), 71187123.
Zaefferer, S (2000). New developments of computer-aided crystallographic analysis in transmission electron microscopy. J Appl Crystallogr 33(1), 1025.
Zaefferer, S (2011). A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46(6), 607628.
Zaluzec, NJ (2002). Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM. Microsc Microanal 8(S02), 376377.
Zaluzec, NJ (2003). Computationally mediated experimental science. Microsc Microanal 9(S02), 150151.
Zaluzec, N (2007). Scanning confocal electron microscopy. Microsc Microanal 13(S02), 15601561.
Zeng, Z, Zhang, X, Bustillo, K, Niu, K, Gammer, C, Xu, J & Zheng, H (2015). In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett 15(8), 52145220.
Zhang, P, Istratov, AA, Weber, ER, Kisielowski, C, He, H, Nelson, C & Spence, JC (2006). Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction. Appl Phys Lett 89(16), 161907.
Zhang, H, Ning, H, Busbee, J, Shen, Z, Kiggins, C, Hua, Y, Eaves, J, Davis, J, Shi, T, Shao, Y-T, et al. (2017). Electroplating lithium transition metal oxides. Sci Adv 3(5), e1602427.
Zheng, C & Etheridge, J (2013). Measurement of chromatic aberration in STEM and SCEM by coherent convergent beam electron diffraction. Ultramicroscopy 125, 4958.
Zheng, C, Zhu, Y, Lazar, S & Etheridge, J (2014). Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy. Phys Rev Lett 112(16), 166101.
Zhu, G-Z, Radtke, G & Botton, GA (2012). Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM. Nature 490(7420), 384.
Zuo, J (1992). Automated lattice parameter measurement from HOLZ lines and their use for the measurement of oxygen content in YBa2Cu3O7−δ from nanometer-sized region. Ultramicroscopy 41(1–3), 211223.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed