Skip to main content
×
Home
    • Aa
    • Aa

High-Resolution Field Emission Scanning Electron Microscopy (FESEM) Imaging of Cellulose Microfibril Organization in Plant Primary Cell Walls

  • Yunzhen Zheng (a1), Daniel J. Cosgrove (a1) and Gang Ning (a1) (a2)
Abstract
Abstract

We have used field emission scanning electron microscopy (FESEM) to study the high-resolution organization of cellulose microfibrils in onion epidermal cell walls. We frequently found that conventional “rule of thumb” conditions for imaging of biological samples did not yield high-resolution images of cellulose organization and often resulted in artifacts or distortions of cell wall structure. Here we detail our method of one-step fixation and dehydration with 100% ethanol, followed by critical point drying, ultrathin iridium (Ir) sputter coating (3 s), and FESEM imaging at a moderate accelerating voltage (10 kV) with an In-lens detector. We compare results obtained with our improved protocol with images obtained with samples processed by conventional aldehyde fixation, graded dehydration, sputter coating with Au, Au/Pd, or carbon, and low-voltage FESEM imaging. The results demonstrated that our protocol is simpler, causes little artifact, and is more suitable for high-resolution imaging of cell wall cellulose microfibrils whereas such imaging is very challenging by conventional methods.

Copyright
Corresponding author
* Corresponding author. gxn7@psu.edu
References
Hide All
ArmstrongJ.T. & CrispinK.L. (2013). Ultra-thin iridium as a replacement coating for carbon in high resolution quantitative analyses of insulating specimens. Microsc Microanal 19(Suppl 2), 10701071.
BaskinT.I., MargaF. & GrandboisM. (2005). A comparison of atomic force microscopy and field-emission scanning electron microscopy for imaging the plant cell wall. Microsc Microanal 11, 11301131.
BerryV.K. (1988). Characterization of polymer blends by low voltage scanning electron microscopy. Scanning 10(1), 1927.
CarpitaN.C., DefernezM., FindlayK., WellsB., ShoueD.A., CatchpoleG., WilsonR.H. & McCannM.C. (2001). Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127, 551565.
CosgroveD.J. (2014). Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22C, 122131.
CosgroveD.J. & JarvisM.C. (2012). Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3, 204.
DingS-Y., ZhaoS. & ZengY. (2014). Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21, 863871.
DomozychD.S., SorensenI., PopperZ.A., OchsJ., AndreasA., FangelJ.U., PielachA., SacksC., BrechkaH., Ruisi-BesaresP., WillatsW.G. & RoseJ.K. (2014). Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum . Plant Physiol 165, 105118.
DonaldA.M. (2003). The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat Mater 2, 511516.
EmonsA.M.C. (1988). Methods for visualizing cell wall texture. Acta Bot Neerl 37, 3138.
ErlandsenS.L., KristichC.J., DunnyG.M. & WellsC.L. (2004). High-resolution visualization of the microbial glycocalyx with low-voltage scanning electron microscopy: dependence on cationic dyes. J Histochem Cytochem 52(11), 14271435.
Frey-WysslingA. (1954). The fine structure of cellulose microfibrils. Science 119, 8082.
FujitaM. & WasteneysG.O. (2014). A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of arabidopsis thaliana. Protoplasma 251, 687698.
GoldsteinA., SorokaY., Frušić‐ZlotkinM., PopovI. & KohenR. (2014). High resolution SEM imaging of gold nanoparticles in cells and tissues. J Microsc 256(3), 237247.
GoodenoughU.W. & HeuserJ.E. (1985). The chlamydomonas cell-wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J Cell Biol 101, 15501568.
GriffinB.J. (2007). Variable pressure and environmental scanning electron microscopy: imaging of biological samples. Method Mol Biol 369, 467495.
KafleK., XiX., LeeC.M., TittmannB.R., CosgroveD.J., ParkY.B. & KimS.H. (2014). Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2), 10751086.
KirkS.E., SkepperJ.N. & DonaldA.M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233, 205224.
LiuJ. (2000). High-resolution and low-voltage FE-SEM imaging and microanalysis in materials characterization. Mater Charact 44, 353363.
LucocqJ. (2003). Electron microscopy in cell biology. In Essential Cell Biology (vol. 1 Cell Structure) Davey, J. & Michael, Lord J. (Eds.), pp. 63112. New York, NY, USA: Oxford Press.
MargaF., GrandboisM., CosgroveD.J. & BaskinT.I. (2005). Cell wall extension results in the coordinate separation of parallel microfibrils: Evidence from scanning electron microscopy and atomic force microscopy. Plant J 43, 181190.
McCannM.C., WellsB. & RobertsK. (1990). Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96, 323334.
McManusW.R., McMahonD.J. & ObergC.J. (1993). High-resolution scanning electron microscopy of milk products: A new sample preparation procedure. Food Struct 12(4), 8.
MorganT.E. & HuberG.L. (1967). Loss of lipid during fixation for electron microscopy. J Cell Biol 32(3), 757.
MuscarielloL., RossoF., MarinoG., GiordanoA., BarbarisiM., CafieroG. & BarbarisiA. (2005). A critical overview of esem applications in the biological field. J Cell Physiol 205, 328334.
OsumiM., MisuzuB.A.B.A., NaitoN., AkikoI., YamadaN. & NagataniT. (1988). High resolution, low voltage scanning electron microscopy of uncoated yeast cells fixed by the freeze-substitution method. J Electron Microsc 37(1), 1730.
OsumiM., YamadaN., KoboriH., AkikoI., NaitoN., MisuzuA. & NagataniT. (1989). Cell wall formation in regenerating protoplasts of Schizosaccharomyces pombe: study by high resolution, low voltage scanning electron microscopy. J Electron Microsc 38(6), 457468.
PawleyJ.B. & SchattenH. (2008). Biological Low-Voltage Scanning Electron Microscopy. New York, Berlin: Springer Verlag.
PrestonR.D. & NicolaiE. (1948). An electron microscope study of cellulose in the wall of Valonia ventricosa . Nature 162, 665667.
SchattenH. (2011). Low voltage high-resolution SEM (LVHRSEM) for biological structural and molecular analysis. Micron 42(2), 175185.
SchattenH. (2015). Low voltage SEM and correlative microscopy to analyze delicate biological material. Microsc Microanal 21(Suppl 3), 507508.
SchattenH., SibleyL.D. & RisH. (2003). Structural evidence for actin-like filaments in Toxoplasma gondii using high-resolution low-voltage field emission scanning electron microscopy. Microsc Microanal 9(4), 330335.
SchradJ.R., YoungE.J., AbrahãoJ.S., CortinesJ.R. & ParentK.N. (2017). Microscopic characterization of the Brazilian giant Samba virus. Viruses 9(2), 30.
ThimmJ.C., BurrittD.J., DuckerW.A. & MeltonL.D. (2009). Pectins influence microfibril aggregation in celery cell walls: An atomic force microscopy study. J Struct Biol 168, 337344.
VeskM., DibbayawanT.P., VeskP.A. & EganE.A. (2000). Field emission scanning electron microscopy of plant cells. Protoplasma 210(3–4), 138155.
WeibullC., ChristianssonA. & CarlemalmE. (1983). Extraction of membrane lipids during fixation, dehydration and embedding of Acholeplasma laidlawii‐cells for electron microscopy. J Microsc 129(2), 201207.
XiaoC., ZhangT., ZhengY., CosgroveD.J. & AndersonC.T. (2016). Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiol 170(1), 234249.
ZhangT., VavylonisD., DurachkoD.M. & CosgroveD.J. (2017). Nanoscale movements of cellulose microfibrils in primary cell walls. Nat Plants 3, 17056.
ZhangT., ZhengY. & CosgroveD.J. (2016). Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85(2), 179192.
ZhuC., GangulyA., BaskinT.I., McCloskyD.D., AndersonC.T., FosterC., MeunierK.A., OkamotoR., BergH. & DixitR. (2015). The fragile fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol 167, 780792.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Zheng et al supplementary material
Figure S1

 Word (746 KB)
746 KB

Metrics

Full text views

Total number of HTML views: 10
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 255 *
Loading metrics...

* Views captured on Cambridge Core between 24th August 2017 - 22nd October 2017. This data will be updated every 24 hours.