Skip to main content

Improving Signal to Noise in Labeled Biological Specimens Using Energy-Filtered TEM of Sections with a Drift Correction Strategy and a Direct Detection Device

  • Ranjan Ramachandra (a1), James C. Bouwer (a1), Mason R. Mackey (a1), Eric Bushong (a1), Steven T. Peltier (a1), Nguyen-Huu Xuong (a1) and Mark H. Ellisman (a1)...

Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD’s) to increase the signal to noise as compared with CCD’s. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.

Corresponding author
* Corresponding author.
Hide All
Ahn, C.C. & Krivanek, O.L. (1983). EELS Atlas . Warrendale, PA, USA: Gatan.
Anderson, I.M. (2008). Statistical and systematic errors in EFTEM spectral imaging. Microsc Microanal 14(Suppl 2), 774775.
Aoyama, K., Matsumoto, R. & Komatsu, Y. (2002). How to make mapping images of biological specimens – data collection and image processing. J Electron Microsc 51(4), 257263.
Aronova, M.A., Kim, Y.C., Harmon, R., Sousa, A.A., Zhang, G. & Leapman, R.D. (2008). Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). J Struct Biol 161(3), 322335. (Reprinted from J. Struct. Biol, vol. 160, pp. 35–48, 2007).
Aronova, M.A., Kim, Y.C., Pivovarova, N.B., Andrews, S.B. & Leapman, R.D. (2009). Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens. Ultramicroscopy 109(3), 201212.
Berger, A. & Kohl, H. (1993). Optimum imaging parameters for elemental mapping in an energy filtering transmission electron-microscope. Optik 92(4), 175193.
Bosman, M. & Keast, V.J. (2008). Optimizing EELS acquisition. Ultramicroscopy 108(9), 837846.
Browning, N.D., Wallis, D.J., Nellist, P.D. & Pennycook, S.J. (1997). EELS in the STEM: Determination of materials properties on the atomic scale. Micron 28(5), 333348.
Bushong, E.A., Martone, M.E., Jones, Y.Z. & Ellisman, M.H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1), 183192.
Carter, C.B. & Williams, D.B. (2009). Transmission electron microscopy. New York, USA: Springer.
Daberkow, I., Herrmann, K.H., Liu, L.B. & Rau, W.D. (1991). Performance of electron image converters with yag single-crystal screen and CCD sensor. Ultramicroscopy 38(3–4), 215223.
Direct Electron (2013). Features of DE-12 Camera System. Available at:
Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. (2010). Computer Control of Microscopes Using μManager. Current Protocols in Molecular Biology 92,
Egerton, R.F. (1984). Parallel-recording systems for electron-energy loss spectroscopy (EELS). J Electron Micr Tech 1(1), 3752.
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy. New York, USA: Plenum Press.
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35(6), 399409.
Fan, G.Y. & Ellisman, M.H. (1993). High-sensitivity lens-coupled slow-scan CCD camera for transmission electron-microscopy. Ultramicroscopy 52(1), 2129.
Fan, G.Y. & Ellisman, M.H. (2000). Digital imaging in transmission electron microscopy. J Microsc (Oxf) 200, 113.
Gatan Inc. (2012). Gatan EELS analysis. Available at: Analysis_User_Guide.pdf.
Grogger, W., Varela, M., Ristau, R., Schaffer, B., Hofer, F. & Krishnan, K.M. (2005). Energy-filtering transmission electron microscopy on the nanometer length scale. J Electron Spectrosc 143(2–3), 139147.
Heil, T., Gralla, B., Epping, M. & Kohl, H. (2012). Improving the reliability of the background extrapolation in transmission electron microscopy elemental maps by using three pre-edge windows. Ultramicroscopy 118, 1116.
Heil, T. & Kohl, H. (2010). Optimization of EFTEM image acquisition by using elastically filtered images for drift correction. Ultramicroscopy 110(7), 745750.
Hofer, F., Grogger, W., Kothleitner, G. & Warbichler, P. (1997). Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67(1–4), 83103.
Howell, S.B. (2006). Handbook of CCD Astronomy. Cambridge, UK: Cambridge University Press.
Hunt, J.A. & Williams, D.B. (1991). Electron energy-loss spectrum-imaging. Ultramicroscopy 38(1), 4773.
Jin, L., Milazzo, A.C., Kleinfelder, S., Li, S.D., Leblanc, P., Duttweiler, F., Bouwer, J.C., Peltier, S.T., Ellisman, M.H. & Xuong, N.H. (2008). Applications of direct detection device in transmission electron microscopy. J Struct Biol 161(3), 352358.
Krivanek, O., Gubbens, A., Kundmann, M. & Carpenter, G. (1993). Elemental mapping with an energy-selecting imaging filter. In Proceedings of The Annual Meeting-Electron Microscopy Society Of America, Microscopy Society of America (ed.), pp. 586586. San Francisco, CA, USA: San Francisco Press.
Leapman, R.D. (2003). Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J Microsc (Oxf) 210, 515.
Leapman, R.D. & Aronova, M.A. (2007). Localizing specific elements bound to macromolecules by EFTEM. Method Cell Biol 79, 593613.
Lozano-Perez, S., Bernal, V.D. & Nicholls, R.J. (2009). Achieving sub-nanometre particle mapping with energy-filtered TEM. Ultramicroscopy 109(10), 12171228.
Meijering, E., Dzyubachyk, O. & Smal, I. (2012). Methods for cell and particle tracking. Method Enzymol 504, 183200.
Milazzo, A.C., Lanman, J., Bouwer, J.C., Jin, L., Peltier, S.T., Johnson, J.E., Kleinfelder, S., Xuong, N.H. & Ellisman, M.H. (2009). Advanced detector development for electron microscopy enables new insight into the study of the virus life cycle in cells and Alzheimer’s disease. Microsc Microanal 15, 89.
Milazzo, A.C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J.C., Peltier, S., Ellisman, M., Bieser, F., Matis, H.S., Wieman, H., Denes, P., Kleinfelder, S. & Xuong, N.H. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104(2), 152159.
Milazzo, A.C., Moldovan, G., Lanman, J., Jin, L.A., Bouwer, J.C., Klienfelder, S., Peltier, S.T., Ellisman, M.H., Kirkland, A.I. & Xuong, N.H. (2010). Characterization of a direct detection device imaging camera for transmission electron microscopy. Ultramicroscopy 110(7), 741744.
Mitchell, D. (2002). Dave Mitchell DigitalMicrograph Scripting Website. Available at
Schaffer, B., Grogger, W. & Kothleitner, G. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102(1), 2736.
Shigematsu, H. & Sigworth, F.J. (2013). Noise models and cryo-EM drift correction with a direct-electron camera. Ultramicroscopy 131, 6169.
Shu, X.K., Lev-Ram, V., Deerinck, T.J., Qi, Y.C., Ramko, E.B., Davidson, M.W., Jin, Y.S., Ellisman, M.H. & Tsien, R.Y. (2011). A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLos Biol 9(4), 110.
Shuman, H. & Kruit, P. (1985). Quantitative data-processing of parallel recorded electron energy-loss spectra with low signal to background. Rev Sci Instrum 56(2), 231239.
Suenaga, K., Sato, Y., Liu, Z., Kataura, H., Okazaki, T., Kimoto, K., Sawada, H., Sasaki, T., Omoto, K., Tomita, T., Kaneyama, T. & Kondo, Y. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat Chem 1(5), 415418.
Terada, S., Aoyama, T., Yano, F. & Mitsui, Y. (2001). Time-resolved acquisition technique for elemental mapping by energy-filtering TEM. J Electron Microsc 50(2), 8387.
Xuong, N.H., Jin, L., Kleinfelder, S., Li, S.D., Leblanc, P., Duttweiler, F., Bouwer, J.C., Peltier, S.T., Milazzo, A.C. & Ellisman, M. (2007). Future directions for camera systems in electron microscopy. Method Cell Biol 79, 721739.
Xuong, N.H., Milazzo, A.C., Leblanc, P., Duttweiler, F., Bouwer, J.C., Peltier, S.T., Ellisman, M., Denes, P., Bieser, F. & Matis, H.S. (2004). First use of a high-sensitivity active pixel sensor array as a detector fpr electron microscopy. Proc SPIE 5301, 242.
Zhang, P.J., Land, W., Lee, S., Juliani, J., Lefman, J., Smith, S.R., Germain, D., Kessel, M., Leapman, R., Rouault, T.A. & Subramaniam, S. (2005). Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J Struct Biol 150(2), 144153.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 457 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st March 2018. This data will be updated every 24 hours.