Skip to main content Accessibility help
×
×
Home

Information Transfer in a TEM Corrected for Spherical and Chromatic Aberration

  • M. Haider (a1), P. Hartel (a1), H. Müller (a1), S. Uhlemann (a1) and J. Zach (a1)...
Abstract

For the transmission electron aberration-corrected microscope (TEAM) initiative of five U.S. Department of Energy laboratories in the United States, a correction system for the simultaneous compensation of the primary axial aberrations, the spherical aberration Cs, and the chromatic aberration Cc has been developed and successfully installed. The performance of the resulting Cc /Cs-corrected TEAM instrument has been investigated thoroughly. A significant improvement of the linear contrast transfer can be demonstrated. The information about the instrument one obtains using Young's fringe method is compared for uncorrected, Cs-corrected, and Cc /Cs-corrected instruments. The experimental results agree well with simulations. The conclusions might be useful to others in understanding the process of image formation in a Cc /Cs-corrected transmission electron microscope.

Copyright
Corresponding author
Corresponding author. E-mail: haider@ceos-gmbh.de
References
Hide All
Barthel, J. & Thust, A. (2008). Quantification of the information limit of transmission electron microscopes. Phys Rev Lett 101, 200801.
Bernhard, W. (1980). Erprobung eines sphärisch und chromatisch korrigierten Elektronenmikroskopes. Optik 57(1), 7394.
Deltrap, J. (1964). Correction of spherical aberration with combined quadrupole-octopole units. Proc EUREM-3 A, pp. 4546. Prague, Czechoslovakia: Czechoslovak Academy of Sciences.
DOE. (2004). A twenty-year outlook. Report, Facilities for the Future of Science. Washington, D.C.: U.S. Department of Energy. Available at http://ncem.lbl.gov/TEAM-project/files/roadmap.html.
Doyle, P.A. & Turner, P.S. (1968). Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Crystallogr A 24(3), 390397.
Feynman, R. (1960). There's plenty of room at the bottom. Engineering and Science Magazine, February. Reprinted in Feynman, R. (1992). J Microelectromech S 1(1), 6066.
Frank, J. (1973). The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38(5), 519536.
Haider, M., Löbau, U., Höschen, R., Müller, H., Uhlemann, S. & Zach, J. (2007). State of the development of a C c /C s-corrector for TEAM. Microsc Microanal 13(S2), 1156CD1157CD.
Haider, M., Müller, H., Uhlemann, S., Zach, J., Löbau, U. & Höschen, R. (2008). Prerequisites for a C c /C s-corrected ultrahigh-resolution tem. Ultramicroscopy 108, 167178.
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.
Hanszen, K. & Trepte, L. (1971). Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung. Optik 33, 166182.
Hardy, D. (1967). Combined magnetic and electrostatic quadrupole electron lenses. Dissertation. Cambridge, UK: University of Cambridge.
Hely, H. (1982). Messungen an einem verbesserten korrigierten Elektronenmikroskop. Optik 60, 353370.
Ishizuka, K. (1980). Contrast transfer of crystal images in TEM. Ultramicroscopy 5, 5565.
Kirkland, E. (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.
Krivanek, O., Dellby, N. & Lupini, A. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.
Meyer, J., Chuvilin, A., Algara-Siller, G., Biskupek, J. & Kaiser, U. (2009). Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett 9(7), 26832689.
Möllenstedt, G. (1956). Elektronenmikroskopische Bilder mit einem nach O. Scherzer sphärisch korrigierten Objektiv. Optik 13, 209215.
O'Keefe, M., Allard, L. & Blom, D. (2008). Young's fringes are not evidence of HRTEM resolution. Microsc Microanal 14(S2), 834CD835CD.
Rose, H. (1967). Über den spärischen und den chromatischen Fehler unrunder Elektronenlinsen. Optik 25, 587597.
Rose, H. (1970). Berechnung eines elektronenoptischen Apochromaten. Optik 32, 144164.
Rose, H. (1971). Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate. Optik 33, 124.
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Physik 101, 593603.
Scherzer, O. (1939). Die theoretisch erreichbare Auflösungsgrenze des Elektronenmikroskops. Z Phys 114, 427434.
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2, 114132.
Scherzer, O. (1982). Phase tomagraphy in the corrected electron microscope. Ultramicroscopy 9, 916.
Seeliger, R. (1951). Die sphärische Korrektur von Elektronenlinsen mittels nicht-rotationssymmetrischer Abbildungselemente. Optik 8, 311317.
Stadelmann, P. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131146.
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.
Zach, J. & Haider, M. (1995a). Aberration correction in a low voltage sem by a multipole corrector. Nucl Instrum Meth A 363, 316325.
Zach, J. & Haider, M. (1995b). Correction of spherical and chromatic aberration in a low voltage sem. Optik 98(3), 112118.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed