Skip to main content
    • Aa
    • Aa

Liquid Scanning Transmission Electron Microscopy: Imaging Protein Complexes in their Native Environment in Whole Eukaryotic Cells

  • Diana B. Peckys (a1) and Niels de Jonge (a1) (a2)

Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

Corresponding author
* Corresponding author.
Hide All
AaronJ., TravisK., HarrisonN. & SokolovK. (2009). Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling. Nano Lett 9, 36123618.
AgronskaiaA.V., ValentijnJ.A., van DrielL.F., SchneijdenbergC.T., HumbelB.M., van Bergen en HenegouwenP.M., VerkleijA.J., KosterA.J. & GerritsenH.C. (2008). Integrated fluorescence and transmission electron microscopy. J Struct Biol 164, 183189.
AllisonD.P., MortensenN.P., SullivanC.J. & DoktyczM.J. (2010). Atomic force microscopy of biological samples. WIREs Nanomed Nanobiotechnol 2, 618634.
ArkhipovA., ShanY., DasR., EndresN.F., EastwoodM.P., WemmerD.E., KuriyanJ. & ShawD.E. (2013). Architecture and membrane interactions of the EGF receptor. Cell 152, 557569.
BaderA.N., HofmanE.G., VoortmanJ., en HenegouwenP.M. & GerritsenH.C. (2009). Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97, 26132622.
BatesM., HuangB., DempseyG.T. & ZhuangX. (2007). Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 17491753.
BetzigE., PattersonG.H., SougratR., LindwasserO.W., OlenychS., BonifacinoJ.S., DavidsonM.W., Lippincott-SchwartzJ. & HessH.F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 16421645.
BlakelyB.T., RossiF.M., TillotsonB., PalmerM., EstellesA. & BlauH.M. (2000). Epidermal growth factor receptor dimerization monitored in live cells. Nat Biotechnol 18, 218222.
BognerA., TholletG., BassetD., JouneauP.H. & GauthierC. (2005). Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.
BozzolaJ.J. & RussellL.D. (1999). Electron Microscopy Principles and Techniques for Biologists. Boston: Jones and Barlett Publishers.
BrandenbergerC., MuhlfeldC., AliZ., LenzA.G., SchmidO., ParakW.J., GehrP. & Rothen-RutishauserB. (2010). Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6, 16691678.
BrightN.A., ReavesB.J., MullockB.M. & LuzioJ.P. (1997). Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110(Pt 17), 20272040.
BushbyA.J., P’NgK.M., YoungR.D., PinaliC., KnuppC. & QuantockA.J. (2011). Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc 6, 845858.
ChithraniB.D., GhazaniA.A. & ChanW.C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6, 662668.
ChungI., AkitaR., VandlenR., ToomreD., SchlessingerJ. & MellmanI. (2010). Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783787.
CitriA. & YardenY. (2006). EGF-ERBB signalling: Towards the systems level. Nat Rev Mol Cell Biol 7, 505516.
CoffmanV.C. & WuJ.Q. (2012). Counting protein molecules using quantitative fluorescence microscopy. Trends Biochem Sci 37, 499506.
ColliexC., JeanguillaumeC. & MoryC. (1984). Unconventional modes for STEM imaging of biological structures. J Ultra Mol Struct R 88, 177206.
CoskunU. & SimonsK. (2011). Cell membranes: The lipid perspective. Structure 19, 15431548.
CreweA.V., WallJ. & LangmoreJ. (1970). Visibility of single atoms. Science 168, 13381340.
DavisM.E., ChenZ.G. & ShinD.M. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 7, 771782.
de JongeN. (2010). System and methods for live cell transmission electron microscopy. Provisional US Patent 61,414,603.
de JongeN., PeckysD.B., KremersG.J. & PistonD.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106, 21592164.
de JongeN., PeckysD.B., VeithG.M., MickS., PennycookS.J. & JoyC.S. (2007). Scanning transmission electron microscopy of samples in liquid (liquid STEM). Microsc Microanal 13(Suppl 2), 242243.
de JongeN., Poirier-DemersN., DemersH., PeckysD.B. & DrouinD. (2010). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 11141119.
de JongeN. & RossF.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.
DemersH., Poirier-DemersN., DrouinD. & de JongeN. (2010). Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc Microanal 16, 795804.
DemersH., RamachandraR., DrouinD. & de JongeN. (2012). The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc Microanal 18, 582590.
DukesM.J., PeckysD.B. & de JongeN. (2010). Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4, 41104116.
ElsaesserA., TaylorA., de YanesG.S., McKerrG., KimE.M., O’HareE. & HowardC.V. (2010). Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine 5, 14471457.
EndresN.F., DasR., SmithA.W., ArkhipovA., KovacsE., HuangY., PeltonJ.G., ShanY., ShawD.E., WemmerD.E., GrovesJ.T. & KuriyanJ. (2013). Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543556.
EvansJ.E., JungjohannK.L., BrowningN.D. & ArslanI. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.
EvansJ.E., JungjohannK.L., WongP.C.K., ChiuP.L., DutrowG.H., ArslanI. & BrowningN.D. (2012). Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43, 10851090.
FrankJ. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies-Visualization of Biological Molecules in Their Native State. Oxford: Oxford University Press.
FranksR., MorefieldS., WenJ., LiaoD., AlvaradoJ., StranoM. & MarshC. (2008). A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J Nanosci Nanotechnol 8, 44044407.
FujimotoK. (1995). Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108(Pt 11), 34433449.
FujitaA., ChengJ. & FujimotoT. (2010). Quantitative electron microscopy for the nanoscale analysis of membrane lipid distribution. Nat Protoc 5, 661669.
FujitaA., ChengJ., HirakawaM., FurukawaK., KusunokiS. & FujimotoT. (2007). Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18, 21122122.
GaiettaG., DeerinckT.J., AdamsS.R., BouwerJ., TourO., LairdD.W., SosinskyG.E., TsienR.Y. & EllismanM.H. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503507.
GiepmansB.N., DeerinckT.J., SmarrB.L., JonesY.Z. & EllismanM.H. (2005). Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat Meth 2, 743749.
GilmoreB.L., ShowalterS.P., DukesM.J., TannerJ.R., DemmertA.C., McDonaldS.M. & KellyD.F. (2013). Visualizing viral assemblies in a nanoscale biosphere. Lab Chip 13, 216219.
GlavinovicM.I., VitaleM.L. & TrifaroJ.M. (1998). Comparison of vesicular volume and quantal size in bovine chromaffin cells. Neuroscience 85, 957968.
GroganJ.M. & BauH.H. (2010). The nanoaquarium: A platform for in situ transmission electron microscopy in liquid media. J Microelectromech S 19, 885894.
HahnM.A., SinghA.K., SharmaP., BrownS.C. & MoudgilB.M. (2011). Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal Bioanal Chem 399, 327.
HainfeldJ.F. & PowellR.D. (2000). New frontiers in gold labeling. J Histochem Cytochem 48, 471480.
HanahanD. & WeinbergR.A. (2000). The hallmarks of cancer. Cell 100, 5770.
HellS.W. (2007). Far-field optical nanoscopy. Science 316, 11531158.
HenjesF., BenderC., von der HeydeS., BraunL., MannspergerH.A., SchmidtC., WiemannS., HasmannM., AulmannS., BeissbarthT. & KorfU. (2012). Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis 1, e16.
HerbertS., SoaresH., ZimmerC. & HenriquesR. (2012). Single-molecule localization super-resolution microscopy: Deeper and faster. Microsc Microanal 18, 14191429.
HoengerA. & Bouchet-MarquisC. (2011). Cellular tomography. Adv Protein Chem Struct Biol 82, 6790.
HoengerA. & McIntoshJ.R. (2009). Probing the macromolecular organization of cells by electron tomography. Curr Opin Cell Biol 21, 8996.
Hohmann-MarriottM.F., SousaA.A., AzariA.A., GlushakovaS., ZhangG., ZimmerbergJ. & LeapmanR.D. (2009). Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6, 729731.
HoltzM.E., YuY., GaoJ., AbrunaH.D. & MullerD.A. (2013). In situ electron energy-loss spectroscopy in liquids. Microsc Microanal 19, 10271035.
HuangT.W., LiuS.Y., ChuangY.J., HsiehH.Y., TsaiC.Y., HuangY.T., MirsaidovU., MatsudairaP., TsengF.G., ChangC.S. & ChenF.R. (2012). Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip 12, 340347.
HyunJ.K., ErciusP. & MullerD.A. (2008). Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 17.
JoyD.C. & JoyC.S. (2005). Scanning electron microscope imaging in liquids—some data on electron interactions in water. J Microsc 221, 8499.
KirkS.E., SkepperJ.N. & DonaldA.M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233, 205224.
KleinK.L., AndersonI.M. & de JongeN. (2011). Transmission electron microscopy with a liquid flow cell. J Microsc 242, 117123.
KourkoutisL.F., PlitzkoJ.M. & BaumeisterW. (2012). Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42, 3358.
LarabellC.A. & NugentK.A. (2010). Imaging cellular architecture with X-rays. Curr Opin Struct Biol 20, 623631.
LeisA., RockelB., AndreesL. & BaumeisterW. (2009). Visualizing cells at the nanoscale. Trends Biochem Sci 34, 6070.
LeonardD., HayakawaA., LaweD., LambrightD., BellveK.D., StandleyC., LifshitzL.M., FogartyK.E. & CorveraS. (2008). Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J Cell Sci 121, 34453458.
LidkeD.S. & LidkeK.A. (2012). Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures. J Cell Sci 125, 25712580.
LidkeD.S., NagyP., HeintzmannR., Arndt-JovinD.J., PostJ.N., GreccoH.E., Jares-ErijmanE.A. & JovinT.M. (2004). Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22, 198203.
LillemeierB.F., PfeifferJ.R., SurviladzeZ., WilsonB.S. & DavisM.M. (2006). Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci 103, 1899218997.
Lippincott-SchwartzJ. & ManleyS. (2009). Putting super-resolution fluorescence microscopy to work. Nat Meth 6, 2123.
Lippincott-SchwartzJ., SnappE. & KenworthyA. (2001). Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2, 444456.
LiuK.L., WuC.C., HuangY.J., PengH.L., ChangH.Y., ChangP., HsuL. & YewT.R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921.
LivN., ZonnevylleA.C., NarvaezA.C., EfftingA.P., VoorneveldP.W., LucasM.S., HardwickJ.C., WepfR.A., KruitP. & HoogenboomJ.P. (2013). Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One 8, e55707.
LoosJ., SourtyE., LuK., FreitagB., TangD. & WallD. (2009). Electron tomography on micrometer-thick specimens with nanometer resolution. Nano Lett 9, 17041708.
MackayJ.P., SundeM., LowryJ.A., CrossleyM. & MatthewsJ.M. (2007). Protein interactions: Is seeing believing? Trends Biochem Sci 32, 530531.
MatricardiV.R., MoretzR.C. & ParsonsD.F. (1972). Electron diffraction of wet proteins: Catalase. Science 177, 268270.
MayhewT.M., MuhlfeldC., VanheckeD. & OchsM. (2009). A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat 191, 153170.
McDonaldK.L. (2009). A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J Microsc 235, 273281.
MedaliaO., WeberI., FrangakisA.S., NicastroD., GerischG. & BaumeisterW. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 12091213.
MirsaidovU.M., ZhengH., CasanaY. & MatsudairaP. (2012). Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys J 102, L15L17.
MohantyN., FahrenholtzM., NagarajaA., BoyleD. & BerryV. (2011). Impermeable graphenic encasement of bacteria. Nano Lett 11, 12701275.
Moiseenkova-BellV.Y. & WenselT.G. (2009). Hot on the trail of TRP channel structure. J Gen Physiol 133, 239244.
MontellC., BirnbaumerL. & FlockerziV. (2002). The TRP channels, a remarkably functional family. Cell 108, 595598.
MuellerS.A. & EngelA. (2006). Biological scanning transmission electron microscopy: Imaging and single molecule mass determination. Chimia 60, 749753.
NagyP., ClausJ., JovinT.M. & Arndt-JovinD.J. (2010). Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc Natl Acad Sci 107, 1652416529.
NawaY., InamiW., ChibaA., OnoA., MiyakawaA., KawataY., LinS. & TerakawaS. (2012). Dynamic and high-resolution live cell imaging by direct electron beam excitation. Opt Express 20, 56295635.
NishiyamaH., SugaM., OguraT., MaruyamaY., KoizumiM., MioK., KitamuraS. & SatoC. (2010). Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169, 438449.
NormannoN., De LucaA., BiancoC., StrizziL., MancinoM., MaielloM.R., CarotenutoA., De FeoG., CaponigroF. & SalomonD.S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 216.
OorschotV., de WitH., AnnaertW.G. & KlumpermanJ. (2002). A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J Histochem Cytochem 50, 10671080.
ParsonsD.F. (1974). Structure of wet specimens in electron microscopy. Science 186, 407414.
ParsonsD.F., MatricardiV.R., MoretzR.C. & TurnerJ.N. (1974). Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv Biol Med Phys 15, 161270.
PawleyJ.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.
PeckysD.B., BaudoinJ.-P., EderM., WernerU. & de JongeN. (2013 a). Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci Rep 3, 2626.
PeckysD.B., BaudoinJ.P., EderM., WernerU. & de JongeN. (2013 b). Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci Rep 3, 2626.
PeckysD.B. & de JongeN. (2011 a). Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Lett 11, 17331738.
PeckysD.B. & de JongeN. (2011 b). Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11, 17331738.
PeckysD.B., MazurP., GouldK.L. & de JongeN. (2011). Fully hydrated yeast cells imaged with electron microscopy. Biophys J 100, 25222529.
PeckysD.B., VeithG.M., JoyD.C. & de JongeN. (2009). Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One 4, e8214.
PiersonJ., SaniM., TomovaC., GodsaveS. & PetersP.J. (2009). Toward visualization of nanomachines in their native cellular environment. Histochem Cell Biol 132, 253262.
RamachandraR., DemersH. & de JongeN. (2013). The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 19, 93101.
ReimerL. & KohlH. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.
RingE.A. & de JongeN. (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal 16, 622629.
RingE.A. & de JongeN. (2012). Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron 43, 10781084.
RingE.A., PeckysD.B., DukesM.J., BaudoinJ.P. & de JongeN. (2011). Silicon nitride windows for electron microscopy of whole cells. J Microsc 243, 273283.
RiscoC., Sanmartin-ConesaE., TzengW.P., FreyT.K., SeyboldV. & de GrootR.J. (2012). Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure 20, 759766.
RobinsonC.V., SaliA. & BaumeisterW. (2007). The molecular sociology of the cell. Nature 450, 973982.
RoseA. (1948). Television pickup tubes and the problem of noise. Adv Electron 1, 131166.
SaliA., GlaeserR., EarnestT. & BaumeisterW. (2003). From words to literature in structural proteomics. Nature 422, 216225.
SchlessingerJ. (1988). Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13, 443447.
ShroffH., GalbraithC.G., GalbraithJ.A. & BetzigE. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Meth 5, 417423.
ShuX., Lev-RamV., DeerinckT.J., QiY., RamkoE.B., DavidsonM.W., JinY., EllismanM.H. & TsienR.Y. (2011). A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9, e1001041.
SiegwartD.J., SrinivasanA., BencherifS.A., KarunanidhiA., OhJ.K., VaidyaS., JinR., HollingerJ.O. & MatyjaszewskiK. (2009). Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromolecules 10, 23002309.
SousaA.A., AronovaM.A., KimY.C., DorwardL.M., ZhangG. & LeapmanR.D. (2007). On the feasibility of visualizing ultrasmall gold labels in biological specimens by STEM tomography. J Struct Biol 159, 507522.
SousaA.A., AzariA.A., ZhangG. & LeapmanR.D. (2011). Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging. J Struct Biol 174, 107114.
SousaA.A., Hohmann-MarriottM.F., ZhangG. & LeapmanR.D. (2009). Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections. Ultramicroscopy 109, 213221.
SousaA.A. & LeapmanR.D. (2012). Development and application of STEM for the biological sciences. Ultramicroscopy 123, 3849.
SpirinV. & MirnyL.A. (2003). Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci 100, 1212312128.
StahlbergH. & WalzT. (2008). Molecular electron microscopy: State of the art and current challenges. ACS Chem Biol 3, 268281.
StokesD.L. (2008). Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-SEM). Chichester, West-Sussex: Wiley.
TanakaK.A., SuzukiK.G., ShiraiY.M., ShibutaniS.T., MiyaharaM.S., TsuboiH., YaharaM., YoshimuraA., MayorS., FujiwaraT.K. & KusumiA. (2010). Membrane molecules mobile even after chemical fixation. Nat Methods 7, 865866.
TantraR. & KnightA. (2011). Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques. Nanotoxicology 5, 381392.
TantraR. & ShardA. (2013). We need answers. Nat Nanotechnol 8, 71.
ThibergeS., NechushtanA., SprinzakD., GileadiO., BeharV., ZikO., ChowersY., MichaeliS., SchlessingerJ. & MosesE. (2004). Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci 101, 33463351.
TynanC.J., RobertsS.K., RolfeD.J., ClarkeD.T., LoefflerH.H., KastnerJ., WinnM.D., ParkerP.J. & Martin-FernandezM.L. (2011). Human epidermal growth factor receptor (EGFR) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Mol Cell Biol 31, 22412252.
UlbrichM.H. & IsacoffE.Y. (2007). Subunit counting in membrane-bound proteins. Nat Meth 4, 319321.
UllrichA. & SchlessingerJ. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203212.
VenkatachalamK. & MontellC. (2007). TRP channels. Ann Rev Biochem 76, 387417.
WangJ., BoriskinaS.V., WangH.Y. & ReinhardB.M. (2011). Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling. ACS Nano 5, 66196628.
WebsterP., SchwarzH. & GriffithsG. (2008). Preparation of cells and tissues for immuno EM. Methods Cell Biol 88, 4558.
WestphalV., RizzoliS.O., LauterbachM.A., KaminD., JahnR. & HellS.W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246249.
WhiteE.R., MecklenburgM., ShevitskiB., SingerS.B. & ReganB.C. (2012). Charger nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 36953698.
WilliamsonM.J., TrompR.M., VereeckenP.M., HullR. & RossF.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.
WilligK.I., RizzoliS.O., WestphalV., JahnR. & HellS.W. (2006). STED microscopy reveals that synapthotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935939.
WincklerP., LartigueL., GiannoneG., De GiorgiF., IchasF., SibaritaJ.B., LounisB. & CognetL. (2013). Identification and super-resolution imaging of ligand-activated receptor dimers in live cells. Sci Rep 3, 2387.
WoehlT.J., JungjohannK.L., EvansJ.E., ArslanI., RistenpartW.D. & BrowningN.D. (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 5363.
XiaoY., PatolskyF., KatzE., HainfeldJ.F. & WillnerI. (2003). “Plugging into Enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 299, 18771881.
YuC., HaleJ., RitchieK., PrasadN.K. & IrudayarajJ. (2009). Receptor overexpression or inhibition alters cell surface dynamics of EGF-EGFR interaction: New insights from real-time single molecule analysis. Biochem Biophys Res Commun 378, 376382.
YukJ.M., ParkJ., ErciusP., KimK., HellebuschD.J., CrommieM.F., LeeJ.Y., ZettlA. & AlivisatosA.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.
ZhengH., ClaridgeS.A., MinorA.M., AlivisatosA.P. & DahmenU. (2009 a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9, 24602465.
ZhengH., SmithR.K., JunY.W., KisielowskiC., DahmenU. & AlivisatosA.P. (2009 b). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 12
Total number of PDF views: 136 *
Loading metrics...

Abstract views

Total abstract views: 573 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.