Skip to main content Accessibility help
×
×
Home

Micro-PIXE and Micro-RBS Characterization of Micropores in Porous Silicon Prepared Using Microwave-Assisted Hydrofluoric Acid Etching

  • Muthanna Ahmad (a1) and Geoffrey W. Grime (a2)
Abstract

Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.

Copyright
Corresponding author
* Corresponding author. E-mail: cscientific2@aec.org.sy
** Corresponding author. E-mail: g.grime@surrey.ac.uk
References
Hide All
Aravamudhan, S., Abdur Rahman, A. & Bhansali, S. (2005). Porous silicon based orientation independent, self-priming micro direct ethanol fuel cell. Sensor Actuator A 123124, 497504.
Badawy, W.A. (2008). Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells. J Alloy Compd 464, 347351.
Campbell, J.L., Boyd, N.I., Grassi, N., Bonnick, P. & Maxwell, J.A. (2010). The Guelph PIXE software package IV. Nucl Instrum Meth B 268, 33563363.
Chartier, C., Bastide, S. & Levy-Clement, C. (2008). Metal-assisted chemical etching of silicon in HF–H2O2 . Electrochim Acta 53, 55095516.
Cullis, A.G., Canham, L.T. & Calcott, P.D.J. (1997). The structural and luminescence properties of porous silicon. Appl Phys Rev 82, 909966.
Dziuban, J.A. (2000). Microwave enhanced fast anisotropic etching of monocrystalline silicon. Sensor Actuator 85, 133138.
Garman, E.F. & Grime, G.W. (2005). Elemental analysis of proteins by microPIXE. Prog Biophys Mol Biol 89, 173205.
Grime, G.W. & Guttmann-Bond, E. (2011). The identification of plaggen soils using external beam microPIXE analysis. X-Ray Spectrom 40, 210214.
Hadjersi, T. (2007). Oxidizing agent concentration effect on metal-assisted electroless etching mechanism in HF-oxidizing agent-H2O solutions. Appl Surf Sci 253, 41564160.
Huang, Z.P., Geyer, N., Liu, L.F., Li, M.Y. & Zhong, P. (2010). Metal-assisted electrochemical etching of silicon. Nanotechnology 21, 465301.
Jeynes, C., Bailey, M.J., Bright, N.J., Christopher, M.E., Grime, G.W., Jones, B.N., Palitsin, V.V. & Webb, R.P. (2012). “Total IBA”—Where are we? Nucl Instrum Meth B 271, 107118.
Jeynes, C., Webb, R.P. & Lohstroh, A. (2011). Ion beam analysis: A century of exploiting the electronic and nuclear structure of the atom for materials characterisation. Rev Accl Sci Tech 4, 4182.
Johansson, S.A.E., Campbell, J.L. & Malmqvist, K.G. (1995). Particle-Induced X-Ray Emission Spectrometry (PIXE). New York: John Wiley & Sons.
Koker, L. & Kolasinski, K.W. (2000). Photoelectrochemical etching of Si and porous Si in aqueous HF. Phys Chem Chem Phys 2, 277281.
Li, X. & Bohn, P.W. (2000). Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77, 25722575.
Li, Y.Y., Cunin, F., Link, J.R., Gao, T., Betts, R.E., Reiver, S.H., Chin, V., Bhatia, S.N. & Sailor, M.J. (2003). Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 20452047.
Lin, V.S.-Y., Motesharei, K., Dancil, K.-P.S., Sailor, M.J. & Ghadiri, M.R. (1997). A porous silicon-based optical interferometric biosensor. Science 278, 840843.
Mathew, F.P. & Alocilja, E.C. (2005). Porous silicon-based biosensor for pathogen detection. Biosens Bioelectron 20, 16561661.
Mesjasz-Przybyłowicz, J. & Przybyłowicz, W.J. (2011). PIXE and metal hyperaccumulation: From soil to plants and insects. X-Ray Spectrom 40, 181185.
Pleskov, Y.V. & Gurevich, Y.Y. (1986). Semiconductor Photoelectrochemistry. New York: Consultants Bureau.
Ramos, A.R., Paúl, A., Rijniers, L., Da Silva, M.F. & Soares, J.C. (2002). Measurement of (p,p) elastic differential cross-sections for carbon, nitrogen, oxygen, aluminium and silicon in the 500–2500 keV range at 140° and 178° laboratory scattering angles. Nucl Instrum Meth B 190, 9599. Data retrieved from the IBANDL database: http://www-nds.iaea.org/ibandl/.
Ryan, C.G. (2011). PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials. Nucl Instrum Meth B 269, 21512162.
Saadoun, M., Ezzaouia, H., Bessais, B., Boujmil, M.F. & Bennaceur, R. (1999). Formation of porous silicon for large-area silicon solar cells: A new method. Sol Energy Mater Sol Cells 59, 377385.
Sakai, T., Oikawa, M. & Sato, T. (2005). External scanning proton microprobe—A new method for in-air elemental analysis. J Nucl Radiochem Sci 6, 6971.
Simon, A., Jeynes, C., Webb, R.P., Finnis, R., Tabatabaian, Z., Sellin, P.J., Breese, M.B.H., Fellows, D.F., Van Den Broek, R. & Gwilliam, R.M. (2004). The new surrey ion beam analysis facility. Nucl Instrum Meth B 219220, 405409.
Simon, A., Pászti, F., Manuaba, A. & Kiss, Á.Z. (1999). Three-dimensional scanning of ion-implanted porous silicon. Nucl Instrum Meth B 158, 658664.
Simon, A., Paszti, F., Uzonyi, I., Manuaba, A. & Kiss, A.Z. (1998a). Effect of surface topography on scanning RBS microbeam measurements. Vacuum 50, 503506.
Simon, A., Paszti, F., Uzonyi, I., Manuaba, A., Kiss, A.Z. & Rajta, I. (1998b). Observation of surface topography using an RBS microbeam. Nucl Instrum Meth B 136138, 344349.
Thönissen, M., Beger, M.G., Billat, S., Arens-Fisher, R., Krüger, M., Lüth, H., Theiss, W., Hillbrich, P., Grosse, G., Lerondel, G. & Frotscher, U. (1997). Analysis of the depth homogeneity of p-PS by reflectance measurements. Thin Solid Films 297, 9296.
Torres-Costa, V., Pászti, F., Climent-Font, A., Martín-Palma, R.J. & Martínez-Duart, J.M. (2005). Porosity profile determination of porous silicon interference filters by RBS. Phys Stat Sol C 2, 32083212.
Tripathy, S.P., Kolekar, R.V., Sunil, C., Sarkar, P.K., Dwivedi, K.K. & Sharma, D.N. (2010). Microwave-induced chemical etching (MCE): A fast etching technique for the solid polymeric track detectors (SPTD). Nucl Instrum Meth A 612, 421426
Vázsonyi, É., Szilágyi, E., Petrik, P., Horváth, Z.E., Lohner, T., Fried, M. & Jalsovszky, G. (2001). Porous silicon formation by stain etching, Thin Solid Films 388, 295302.
Walczak, R. & Dziuban, J.A. (2004). Microwave enhanced wet anisotropic etching of silicon utilizing a memory effect of KOH activation—A remote E2MSi process. Sensor Actuator A 116, 161170.
Watt, F., Van Kan, J.A., Rajta, I., Bettiol, A.A., Choo, T.F., Breese, M.B.H. & Osipowicz, T. (2003). The National University of Singapore high energy ion nano-probe facility: Performance tests. Nucl Instrum Meth B 210, 1420.
Yae, S., Kobayashi, T., Kawagishi, T., Fukumuro, N. & Matsuda, H. (2006). Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching. Sol Energy 80, 701706.
Ziegler, J.F. & Biersack, J.P. (2012). Stopping and range of ions in matter (SRIM). Available at http://www.srim.org.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed