Skip to main content
×
Home
    • Aa
    • Aa

A microscopic perspective of a microreactor

  • F. Carvalho (a1), P. Paradiso (a2) and P. Fernandes (a1)
Abstract

The use of microreactors in (bio)chemical processes has been gaining relevance in the last decade. The low consumption of reagents, the possibility of continuous operation and the faster translation from lab- to production scale are some of the several advantages of these devices. The whole results in cost reductions in process development. Enzyme catalyzed reactions have proved to be an excellent alternative to the use of chemicals due to its ability to catalyze the most complex chemical processes under benign experimental and environmental conditions. In this way, enzymes may be crucial to the implementation of a much more sustainable chemical industry.

The present work is within such scope, using as model system the immobilization of invertase in glass (silica) microchannels, for the production of fructose syrups through sucrose hydrolysis. The immobilization of the enzyme was achieved through treatment of the substrate with a sequence of coatings (Figure 1). Activation of the inner surface of the microchannels with 3-aminopropyltriethoxysilane (APTES) was followed by the introduction of a spacer, glutaraldehyde. Lastly the enzyme solution was introduced in the presence of sodium cyanoborohydride, in order to enhance the stability of the support-enzyme binding.

The characterization of the coatings at each stage of the immobilization protocol was carried out to confirm the change of the microchannel surface. Such studies were performed using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis (Figure 1).

The results obtained, namely the shifts on the surface roughness corroborate that the several coatings were successfully applied and the enzyme immobilized. Moreover, the immobilization approach used proved to be highly effective, resulting on successful continuous use of the microreactor for a period of 30 days with roughly constant full conversion of a sucrose solution of 50g/l, at a flow rate of 7µl/minute (Figure 2).

Future work will involve a more extensive characterization of the several coatings by Quartz Crystal Microbalance which will be decisive to achieve a better comprehension of the coating phenomena and hence optimize the immobilization process.

The authors would like to thank Fundação para a Ciência e a Tecnologia, Portugal, for financial support through contracts under the program Ciência 2007 awarded to P. Fernandes, for the doctoral grant SFRH/BD/74818/2010 awarded to F. Carvalho and for the doctoral grant SFRH/BD/71990 /2010 awarded to Patrizia Paradiso.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A microscopic perspective of a microreactor
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A microscopic perspective of a microreactor
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A microscopic perspective of a microreactor
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 36 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.