Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Rockenhäuser, C. Butz, B. Schichtel, N. Janek, J. Oberacker, R. Hoffmann, M.J. and Gerthsen, D. 2014. Microstructure evolution and cation interdiffusion in thin Gd2O3 films on CeO2 substrates. Journal of the European Ceramic Society, Vol. 34, Issue. 5, p. 1235.


    Ye, F. Yin, C. Tong, K. Zhang, C. and Liu, W. B. 2014. Structural evolution of vacancy clusters by combination of cluster units in alpha-iron. Materials Research Innovations, Vol. 18, Issue. sup4, p. S4-1003.


    ×

Microstructural Evolution in a CeO2-Gd2O3 System

  • Fei Ye (a1), Ding Rong Ou (a2) and Toshiyuki Mori (a3)
  • DOI: http://dx.doi.org/10.1017/S1431927611012396
  • Published online: 15 December 2011
Abstract
Abstract

Microstructural evolution in a CeO2-Gd2O3 system at atomic and nanoscale levels with increasing Gd concentration has been comprehensively investigated by transmission electron microscopy. When the Gd concentration was increased from 10 to 80 at.%, the phase transformation from ceria with fluorite structure to solid solution with C-type structure was not a sudden change but an evolution in the sequence of clusters, domains, and precipitates with C-type structure in the fluorite-structured matrix. Moreover, the ordering of aggregated Gd cations and oxygen vacancies in these microstructural inhomogeneities developed continuously with increasing Gd concentration. This microstructural evolution can be further described based on the development of defect clusters containing Gd cations and oxygen vacancies.

Copyright
Corresponding author
Corresponding author. E-mail: yefei@dlut.edu.cn
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

V. Butler , C.R.A. Catlow , B.E.F. Fender & J.H. Harding (1983). Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8, 109113.

C.R.A. Catlow (1981). CRA. Defect clustering in nonstoichiometric oxides. In Nonstoichiometric Oxides, O.T. Sørensen (Ed.), pp. 6198. New York: Academic Press.

R.F. Egerton (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.

L.A.J. Garvie & P.R. Buseck (1999). Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids 60, 19431947.

H. Inaba & H. Tagawa (1996). Ceria-based solid electrolytes. Solid State Ionics 83, 116.

L. Kienle & A. Simon (2001). Microdomains and diffuse scattering in K2In12Se19. J Solid State Chem 161, 385395.

J.G. Li , T. Ikegami , T. Mori & T. Wada (2001). Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation. 1. Synthesis and characterization. Chem Mater 13, 29132920.

L. Minervini , M.O. Zacate & R.W. Grimes (1999). Defect cluster formation in M2O3-doped CeO2. Solid State Ionics 116, 339349.

T. Mori & J. Drennan (2006). Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes. J Electroceram 17, 749757.

T. Mori , J. Drennan , Y. Wang , G. Auchterlonie , J.G. Li & A. Yago (2003). Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system. Sci Technol Adv Mater 4, 213220.

T. Mori , T. Kobayashi , Y. Wang , J. Drennan , T. Nishimura , J.G. Li & H. Kobayahi (2005). Synthesis and characterization of nano-hetero-structured Dy doped CeO2 solid electrolytes using a combination of spark plasma sintering and conventional sintering. J Am Ceram Soc 88, 19811984.

D.R. Ou , T. Mori , F. Ye , T. Kobayashi , J. Zou , G. Auchterlonie & J. Drennan (2006a). Oxygen vacancy ordering in heavily rare-earth-doped ceria. Appl Phys Lett 89, 171911-1–3.

D.R. Ou , T. Mori , F. Ye , M. Takahashi , J. Zou & J. Drennan (2006b). Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. Acta Mater 54, 37373746.

D.R. Ou , T. Mori , F. Ye , J. Zou , G. Auchterlonie & J. Drennan (2007a). Microstructural inhomogeneity in holmium-doped ceria and its influence on the ionic conduction. J Electrochem Soc 154, B616B622.

D.R. Ou , T. Mori , F. Ye , J. Zou , G. Auchterlonie & J. Drennan (2007b). Evidence of intragranular segregation of dopant cations in heavily yttrium-doped ceria. Electrochem Solid State Lett 10, P1P3.

D.R. Ou , T. Mori , F. Ye , J. Zou , G. Auchterlonie & J. Drennan (2008). Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model. Phys Rev B 77, 024108-1–8.

J.A. Rodriguez , J.C. Hanson , J.Y. Kim , G. Liu , A. Iglesias-Juez & M. Fernandez-Garcia (2003). Properties of CeO2 and Ce1-xZrxO2 nanoparticles: X-ray absorption near-edge spectroscopy, density functional and time-resolved X-ray diffraction studies. J Phys Chem B 107, 35353543.

A.V. Soldatov , T.S. Ivanchenko , S. Della Longa , A. Kotani , Y. Iwamoto & A. Bianconi (1994). Crystal-structure effects in the Ce L3-edge X-ray-absorption spectrum of CeO2: Multiple-scattering resonances and many-body final states. Phys Rev B 50, 50745080.

B.C.H. Steele (2000). Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129, 95110.

B.C.H. Steele & A. Heinzel (2001). Materials for fuel-cell technologies. Nature 414, 345352.

A. Travlos , N. Boukos , G. Apostolopoulos & A. Dimoulas (2003). Oxygen vacancy ordering in epitaxial layers of yttrium oxide on Si (001). Appl Phys Lett 82, 40534055.

A. Trovarelli (2002). Catalysis by Ceria and Related Materials. London: Imperial College Press.

R. Wallenberg , R. Withers , D.J.M. Bevan , J.G. Thompson , P. Barlow & B.G. Hyde (1989). The fluorite-related “solid solutions” of CeO2-Y2O3 I: A re-examination by electron microscopy and diffraction. J Less-Common Metals 156, 116.

D.Y. Wang , D.S. Park , J. Griffith & A.S. Nowick (1981). Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 2, 95105.

R. Withers , R. Wallenberg , D.J.M. Bevan , J.G. Thompson & B.G. Hyde (1989). The fluorite-related “solid solutions” of CeO2-Y2O3 II: A modulated structure approach. J Less-Common Metals 156, 1727.

F. Ye , T. Mori , D.R. Ou , A.N. Cormack , R.J. Lewis & J. Drennan (2008a). Simulation of ordering in large defect clusters in gadolinium-doped ceria. Solid State Ionics 179, 19621967.

F. Ye , T. Mori , D.R. Ou , M. Takahashi , J. Zou & J. Drennan (2007a). Ionic conductivities and microstructures of ytterbium-doped ceria. J Electrochem Soc 154, B180B185.

F. Ye , T. Mori , D.R. Ou , J. Zou , G. Auchterlonie & J. Drennan (2007b). Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria. J Appl Phys 101, 113528-1–5.

F. Ye , T. Mori , D.R. Ou , J. Zou , G. Auchterlonie & J. Drennan (2008b). Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria. Solid State Ionics 179, 827831.

F. Ye , T. Mori , D.R. Ou , J. Zou & J. Drennan (2007c). Microstructural characterization of terbium-doped ceria. Mater Res Bull 42, 943949.

F. Ye , T. Mori , D.R. Ou , J. Zou & J. Drennan (2008c). Microstructural characterization of Ce1−xTbxO2−δ (0.60 ≤ x ≤ 0.90) sintered samples. Mater Res Bull 43, 759764.

F. Ye , T. Mori , D.R. Ou , J. Zou & J. Drennan (2009). A structure model of nano-sized domain in Gd-doped ceria. Solid State Ionics 180, 14141420.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: