Skip to main content
×
Home
    • Aa
    • Aa

Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy

  • Joseph P. Patterson (a1), Lucas R. Parent (a1), Joshua Cantlon (a2), Holger Eickhoff (a2), Guido Bared (a2), James E. Evans (a3) and Nathan C. Gianneschi (a1)...
Abstract
Abstract

Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights the great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients.

Copyright
Corresponding author
* Corresponding author. ngianneschi@ucsd.edu
Footnotes
Hide All
a

Contributed equally to this paper.

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H.-R. Aerni , D.S. Cornett & R.M. Caprioli (2006). Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78(3), 827834.

S.A. Barnhill , N.C. Bell , J.P. Patterson , D.P. Olds & N.C. Gianneschi (2015). Phase diagrams of polynorbornene amphiphilic block copolymers in solution. Macromolecules 48(4), 11521161.

P. Calvert (2001). Inkjet printing for materials and devices. Chem Mater 13(10), 32993305.

Q. Chen , H. Cho , K. Manthiram , M. Yoshida , X. Ye & A.P. Alivisatos (2015 a). Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent Sci 1(1), 3339.

X. Chen , C. Li & H. Cao (2015 b). Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 7(11), 48114819.

A. Choucair & A. Eisenberg (2003). Control of amphiphilic block copolymer morphologies using solution conditions. Eur Phys J E Soft Matter 10(1), 3744.

J. Cravillon , C.A. Schröder , R. Nayuk , J. Gummel , K. Huber & M. Wiebcke (2011). Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle x-ray scattering. Angew Chem Int Ed Engl 50(35), 80678071.

B.-J. de Gans , P.C. Duineveld & U.S. Schubert (2004). Inkjet printing of polymers: State of the art and future developments. Adv Mater 16(3), 203213.

J.E. Evans , K.L. Jungjohann , N.D. Browning & I. Arslan (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11(7), 28092813.

J. Li , F. Rossignol & J. Macdonald (2015). Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing. Lab Chip 15(12), 25382558.

H.-G. Liao & H. Zheng (2013). Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J Am Chem Soc 135(13), 50385043.

H.-G. Liao , D. Zherebetskyy , H. Xin , C. Czarnik , P. Ercius , H. Elmlund , M. Pan , L.-W. Wang & H. Zheng (2014). Facet development during platinum nanocube growth. Science 345(6199), 916919.

Y. Mai & A. Eisenberg (2012). Self-assembly of block copolymers. Chem Soc Rev 41(18), 59695985.

M.H. Nielsen , S. Aloni & J.J. De Yoreo (2014). In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345(6201), 11581162.

J.P. Patterson , P. Abellan , M.S. Denny , C. Park , N.D. Browning , S.M. Cohen , J.E. Evans & N.C. Gianneschi (2015 a). Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J Am Chem Soc 137(23), 73227328.

J.P. Patterson , M.T. Proetto & N.C. Gianneschi (2015 b). Soft nanomaterials analysed by in situ liquid TEM: Towards high resolution characterisation of nanoparticles in motion. Perspect Sci 6, 106112.

M.T. Proetto , A.M. Rush , M.-P. Chien , P. Abellan Baeza , J.P. Patterson , M.P. Thompson , N.H. Olson , C.E. Moore , A.L. Rheingold , C. Andolina , J. Millstone , S.B. Howell , N.D. Browning , J.E. Evans & N.C. Gianneschi (2014 b). Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J Am Chem Soc 136(4), 11621165.

M.T. Proetto , A.M. Rush , M.-P. Chien , P. Abellan Baeza , J.P. Patterson , M.P. Thompson , N.H. Olson , C.E. Moore , A.L. Rheingold , C. Andolina , J. Millstone , S.B. Howell , N.D. Browning , J.E. Evans & N.C. Gianneschi (2014 b). Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J Am Chem Soc 136(4), 11621165.

P.J.M. Smeets , K.R. Cho , R.G.E. Kempen , N.A.J.M. Sommerdijk & J.J. De Yoreo (2015). Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat Mater (advance online publication).

E. Tekin , P.J. Smith & U.S. Schubert (2008). Ink-jet printing as deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4), 703713.

A. Verch , M. Pfaff & N. de Jonge (2015). Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir 31(25), 69566964.

M.J. Williamson , R.M. Tromp , P.M. Vereecken , R. Hull & F.M. Ross (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532536.

A. Wixforth , C. Strobl , C. Gauer , A. Toegl , J. Scriba & Z. v Guttenberg (2004). Acoustic manipulation of small droplets. Anal Bioanal Chem 379(7–8), 982991.

T.J. Woehl , J.E. Evans , I. Arslan , W.D. Ristenpart & N.D. Browning (2012). Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6(10), 85998610.

T.J. Woehl , C. Park , J.E. Evans , I. Arslan , W.D. Ristenpart & N.D. Browning (2014). Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett 14(1), 373378.

T.J. Woehl & T. Prozorov (2015). The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J Phys Chem C 119(36), 2126121269.

H. Zheng , S.A. Claridge , A.M. Minor , A.P. Alivisatos & U. Dahmen (2009 a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9(6), 24602465.

H. Zheng , R.K. Smith , Y.-W. Jun , C. Kisielowski , U. Dahmen & A.P. Alivisatos (2009 b). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932), 13091312.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Patterson supplementary material
Movie 1

 Unknown (3.8 MB)
3.8 MB
VIDEO
Supplementary Materials

Patterson supplementary material
Movie 2

 Video (30.5 MB)
30.5 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 12
Total number of PDF views: 80 *
Loading metrics...

Abstract views

Total abstract views: 545 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2017. This data will be updated every 24 hours.