Skip to main content
    • Aa
    • Aa

Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation

  • Rainer Straubinger (a1), Andreas Beyer (a1) and Kerstin Volz (a1)

A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

Corresponding author
* Corresponding author.
Hide All
AdamsG.B.Jr., JohnstonH.L. & KerrE.C. (1952). The heat capacity of gallium up from 15 to 320 K. The heat of fusion at the melting point. J Am Chem Soc 74, 4784.
AllardL.F., OverburyS.H., BigelowW.C., KatzM.B., NackashiD.P. & DamianoJ. (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18, 656666.
BirajdarB.I., AntesbergerT., ButzB., StutzmannM. & SpieckerE. (2012). Direct in situ transmission electron microscopy observation of Al push up during early stages of the Al-induced layer exchange. Scr Mater 66, 550553.
BoyesE.D. & GaiP.L. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.
CreemerJ.F., HelvegS., HovelingG.H., UllmannS., MolenbroekA.M., SarroP.M. & ZandbergenH.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.
GiannuzziL.A. & StevieF.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197204.
GiesS., ZimprichM., WegeleT., KruskaC., BeyerA., StolzW., VolzK. & HeimbrodtW. (2014). Annealing effects on the composition and disorder of Ga(N,As,P) quantum wells on silicon substrates for laser application. J Cryst Growth 402, 169174.
HillerichK., DickK.A., WenC.Y., ReuterM.C., KodambakaS. & RossF.M. (2013). Strategies to control morphology in hybrid group III-V/group IV heterostructure nanowires. Nano Lett 13, 903908.
HoferF., GroggerW., KothleitnerG. & WarbichlerP. (1997). Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67, 83103.
HugoR.C., KungH., WeertmanJ.R., MitraR., KnappJ.A. & FollstaedtD.M. (2003). In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 51, 19371943.
ImrichP.J., KirchlechnerC., KienerD. & DehmG. (2015). Internal and external stresses: In situ TEM compression of Cu bicrystals containing a twin boundary. Scr Mater 100, 9497.
KallesøeC., WenC.Y., BoothT.J., HansenO., BøggildP., RossF.M. & MølhaveK. (2012). In situ TEM creation and electrical characterization of nanowire devices. Nano Lett 12, 29652970.
KatzM.B., DuanY., GrahamG.W., PanX. & AllardL.F. (2012). In situ observation of the evolution of Pt particles in a perovskite-based catalyst during redox cycling at high temperature and atmospheric pressure with atomic resolution. Microsc Microanal 18, 11201121.
KishitaK., SakaiH., TanakaH., SakaH., KurodaK., SakamotoM., WatabeA. & KaminoT. (2009). Development of an analytical environmental TEM system and its application. J Electron Microsc 58, 331339.
LegrosM., GianolaD.S. & HemkerK.J. (2008). In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56, 33803393.
LiebichS., ZimprichM., BeyerA., LangeC., FranzbachD.J., ChatterjeeS., HossainN., SweeneyS.J., VolzK., KunertB. & StolzW. (2011). Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate. Appl Phys Lett 99, 071109.
MorrowB.M., McCabeR.J., CerretaE.K. & ToméC.N. (2014). In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall Mater Trans A Phys Metall Mater Sci 45, 3640.
NielsenM.H., AloniS. & De YoreoJ.J. (2013). In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 218, 213218.
SchafferB., GroggerW. & KothleitnerG. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102, 2736.
SchafferM., SchafferB. & RamasseQ. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.
SuzukiS., BowerC. & ZhouO. (1998). In-situ TEM and EELS studies of alkali–metal intercalation with single-walled carbon nanotubes. Chem Phys Lett 285, 230234.
VolzK., BeyerA., WitteW., OhlmannJ., NmethI., KunertB. & StolzW. (2011). GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration. J Cryst Growth 315, 3747.
WernerK., BeyerA., OelerichJ.O., BaranovskiiS.D., StolzW. & VolzK. (2014). Structural characteristics of gallium metal deposited on Si (001) by MOCVD. J Cryst Growth 405, 102109.
YaguchiT., SuzukiM., WatabeA., NagakuboY., UedaK. & KaminoT. (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.
ZhangS., ChenC., CargnelloM., FornasieroP., GorteR.J., GrahamG.W. & PanX. (2015). Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy. Nat Commun 6, 7778.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 11
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 272 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.