Skip to main content
×
×
Home

Robot-Guided Atomic Force Microscopy for Mechano-Visual Phenotyping of Cancer Specimens

  • Wenjin Chen (a1) (a2), Zachary Brandes (a3), Rajarshi Roy (a4), Marina Chekmareva (a1), Hardik J. Pandya (a3), Jaydev P. Desai (a3) and David J. Foran (a1) (a2)...
Abstract

Atomic force microscopy (AFM) and other forms of scanning probe microscopy have been successfully used to assess biomechanical and bioelectrical characteristics of individual cells. When extending such approaches to heterogeneous tissue, there exists the added challenge of traversing the tissue while directing the probe to the exact location of the targeted biological components under study. Such maneuvers are extremely challenging owing to the relatively small field of view, limited availability of reliable visual cues, and lack of context. In this study we designed a system that leverages the visual topology of the serial tissue sections of interest to help guide robotic control of the AFM stage to provide the requisite navigational support. The process begins by mapping the whole-slide image of a stained specimen with a well-matched, consecutive section of unstained section of tissue in a piecewise fashion. The morphological characteristics and localization of any biomarkers in the stained section can be used to position the AFM probe in the unstained tissue at regions of interest where the AFM measurements are acquired. This general approach can be utilized in various forms of microscopy for navigation assistance in tissue specimens.

Copyright
Corresponding author
* Corresponding author. chenwe@rutgers.edu
References
Hide All
Alessandrini, A. & Facci, P. (2005). AFM: A versatile tool in biophysics. Meas Sci Technol 16(6), R65R92.
Apostolopoulos, J., Davenport, P. & Tipping, P.G. (1996). Interleukin-8 production by macrophages from atheromatous plaques. Arterioscler Thromb Vasc Biol 16(8), 10071012.
Barbareschi, M., Pecciarini, L., Cangi, M.G., Macri, E., Rizzo, A., Viale, G. & Doglioni, C. (2001). p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol 25(8), 10541060.
Batistatou, A., Stefanou, D., Arkoumani, E. & Agnantis, N.J. (2003). The usefulness of p63 as a marker of breast myoepithelial cells. In Vivo 17(6), 573576.
Binnig, G., Quate, C.F. & Gerber, C. (1986). Atomic force microscope. Phys Rev Lett 56(9), 930934.
Borovec, J., Kybic, J., Busta, M., Ortiz-de-Solórzano, C. & Munoz-Barrutia, A. (2013). Registration of multiple stained histological sections. In 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI), IEEE, San Francisco, CA, USA, April 7–11, 2013, pp. 1034–1037.
Braumann, U.D., Kuska, J.P., Einenkel, J., Horn, L.C., Loffler, M. & Hockel, M. (2005). Three-dimensional reconstruction and quantification of cervical carcinoma invasion fronts from histological serial sections. IEEE Trans Med Imaging 24(10), 12861307.
Chen, W. & Foran, D.J. (2007). A computer-assisted microscopy system for automated image analysis of pathology specimens and tissue microarrays. In Image Analysis in Medical Microscopy and Pathology, Hai-Shan Wu & Andrew J. Einstein (Ed.), pp. 123152. New York, NY: Research Signpost.
Cooper, L., Sertel, O., Kong, J., Lozanski, G., Huang, K. & Gurcan, M. (2009). Feature-based registration of histopathology images with different stains: An application for computerized follicular lymphoma prognosis. Comput Methods Programs Biomed 96(3), 182192.
Darling, E.M., Zauscher, S., Block, J.A. & Guilak, F. (2007). A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: Do cell properties reflect metastatic potential? Biophys J 92(5), 17841791.
Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R.S. (2002). Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5), 27982810.
Domke, J. & Radmacher, M. (1998). Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14(12), 33203325.
Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. (2013). OpenSlide: A vendor-neutral software foundation for digital pathology. J Pathol Inform 4, 27.
Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T. & Sambongi, T. (2000). Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82(1–4), 253258.
Johnson, K.L. (1982). One hundred years of hertz contact. Proc Inst Mech Eng [H] 196, 363378.
Kallioniemi, O.-P., Wagner, U., Kononen, J. & Sauter, G. (2001). Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10(7), 657662.
Kuska, J.-P., Braumann, U.-D., Scherf, N., Loffler, M., Einenkel, J., Hockel, M., Horn, L.-C., Wentzensen, N. & von Knebel Doeberitz, M. (2006). Image registration of differently stained histological sections. In 2006 IEEE International Conference on Image Processing, IEEE, Atlanta, GA, USA, October 8–11, 2006, pp. 333–336.
Lal, R. & John, S.A. (1994). Biological applications of atomic force microscopy. Am J Physiol Cell Physiol 266(1), C1C21.
Li, Q.S., Lee, G.Y.H., Ong, C.N. & Lim, C.T. (2008). AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374, 609613.
Lippolis, G., Edsjö, A., Helczynski, L., Bjartell, A. & Overgaard, N.C. (2013). Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections. BMC Cancer 13(1), 408.
Mahaffy, R., Shih, C., MacKintosh, F. & Käs, J. (2000). Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85(4), 880883.
Maitra, A., Adsay, N.V., Argani, P., Iacobuzio-Donahue, C., De Marzo, A., Cameron, J.L., Yeo, C.J. & Hruban, R.H. (2003). Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16(9), 902912.
Moreno-Flores, S. & Toca-Herrera, J.L. (2012). Hybridizing Surface Probe Microscopies: Toward a Full Description of the Meso-and Nanoworlds . Boca Raton, FL: CRC Press.
Moses, R.L., Flint, P.W., Paik, C., Zinreich, S.J. & Cummings, C.W. (1995). Three‐dimensional reconstruction of the feline larynx with serial histologic sections. Laryngoscope 105(2), 164168.
Murayama, K., Meeker, R.B., Murayama, S. & Greenwood, R.S. (1993). Developmental expression of vasopressin in the human hypothalamus: double-labeling with in situ hybridization and immunocytochemistry. Pediatric research 33(2), 152158.
Pandya, H.J., Kim, H.T., Roy, R., Chen, W., Cong, L., Zhong, H., Foran, D.J. & Desai, J.P. (2014). Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements. Sens Actuators B Chem 199, 259268.
Pandya, H.J., Roy, R., Chen, W., Chekmareva, M.A., Foran, D.J. & Desai, J.P. (2015). Accurate characterization of benign and cancerous breast tissues: Aspecific patient studies using piezoresistive microcantilevers. Biosens Bioelectron 63, 414424.
Pavlakis, K., Zoubouli, C., Liakakos, T., Messini, I., Keramopoullos, A., Athanassiadou, S., Kafousi, M. & Stathopoulos, E. (2006). Myoepithelial cell cocktail (p63+SMA) for the evaluation of sclerosing breast lesions. Breast 15(6), 705712.
Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., Oertle, P., Hyotyla, J.T., Aebi, U., Bentires-Alj, M., Lim, R.Y. & Schoenenberger, C.A. (2012). The nanomechanical signature of breast cancer. Nat Nanotechnol 7(11), 757765.
Roberts, N., Magee, D., Song, Y., Brabazon, K., Shires, M., Crellin, D., Orsi, N.M., Quirke, R., Quirke, P. & Treanor, D. (2012). Toward routine use of 3D histopathology as a research tool. Am J Pathol 180(5), 18351842.
Roy, R. (2014). Mechanical characterization of normal and cancerous breast tissue specimens using atomic force microscopy. PhD Thesis. University of Maryland, College Park, MD.
Roy, R., Chen, W., Cong, L., Goodell, L.A., Foran, D.J. & Desai, J.P. (2013). A semi-automated positioning system for contact-mode atomic force microscopy (AFM). IEEE Trans Autom Sci Eng 10(2), 462465.
Roy, R., Chen, W., Goodell, L.A., Hu, J., Foran, D.J. & Desai, J.P. (2010 a). Microarray-facilitated mechanical characterization of breast tissue pathology samples using contact-mode atomic force microscopy (AFM). In 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, Tokyo, Japan, September 26–29, 2010, pp. 710–715.
Roy, R., Chen, W., Hu, J., Goodell, L.A., Foran, D.J. & Desai, J.P. (2010 b). Tissue microarray facilitated mechanical characterization of cancerous breast tissue using atomic force microscopy. Arch Pathol Lab Med 134, 939.
Roy, R. & Desai, J.P. (2014). Determination of mechanical properties of spatially heterogeneous breast tissue specimens using contact mode atomic force microscopy (AFM). Ann Biomed Eng 42(9), 18061822.
Song, Y., Treanor, D., Bulpitt, A.J. & Magee, D.R. (2013). 3D reconstruction of multiple stained histology images. J Pathol Inform 4(Suppl), 7.
Tomas, D. & Krušlin, B. (2004). The potential value of (Myo) fibroblastic stromal reaction in the diagnosis of prostatic adenocarcinoma. Prostate 61(4), 324331.
Tsujino, T., Seshimo, I., Yamamoto, H., Ngan, C.Y., Ezumi, K., Takemasa, I., Ikeda, M., Sekimoto, M., Matsuura, N. & Monden, M. (2007). Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 13(7), 20822090.
Wang, J., Wan, Z., Liu, W., Li, L., Ren, L., Wang, X., Sun, P., Ren, L., Zhao, H. & Tu, Q. (2009). Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs. Biosens Bioelectron 25(4), 721727.
Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F. & Bruchez, M.P. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1), 4146.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed