Skip to main content Accesibility Help
×
×
Home

A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes

  • Stefano Rubino (a1), Sultan Akhtar (a1) (a2) and Klaus Leifer (a1)
Abstract

We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I0(t), as a function of the specimen thickness t (t<<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I0(0) and I0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3–4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

Copyright
Corresponding author
*Corresponding author. stefanorubino@yahoo.it
Footnotes
Hide All
a

These authors have contributed equally to this work.

Footnotes
References
Hide All
Aizawa, T., Souda, R., Otani, S., Ishizawa, Y. & Oshima, C. (1990). Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64(7), 768771.
Boese, M., Kumar, S., O’neill, A., Lotya, M., Zhang, H.Z., Coleman, J.N. & Duesberg, G.S. (2010). A simple method to measure graphite thickness with monolayer precision using plasmon energy loss imaging. Microsc Microanal 16(Suppl 2), 15401541.
Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., Novoselov, K.S. & Ferrari, A.C. (2007). Rayleigh imaging of graphene and graphene layers. Nano Lett 7(9), 27112717.
Chen, X.Q., Xu, Z.H., Li, X.D., Shaibat, M.A., Ishii, Y. & Ruoff, R.S. (2007). Structural and mechanical characterization of platelet graphite nanofibers. Carbon 45(2), 416423.
Coraux, J., N’diaye, A.T., Busse, C. & Michely, T. (2008). Structural coherency of graphene on Ir(111). Nano Lett 8(2), 565570.
Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat Mater 6(3), 183191.
Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P.C. (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12), 26672673.
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., Mcgovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchinson, J., Scardaci, V., Ferrari, A.C. & Coleman, J.N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9), 563568.
Jia, X.T., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Romo-Herrera, J.M., Son, H.B., Hsieh, Y.P., Reina, A., Kong, J., Terrones, M. & Dresselhaus, M.S. (2009). Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 17011705.
Jinschek, J.R., Yucelen, E., Calderon, H.A. & Freitag, B. (2011). Quantitative atomic 3-D imaging of single/double sheet graphene structure. Carbon 49, 556562.
Jung, I., Pelton, M., Piner, R., Dikin, D.A., Stankovich, S., Watcharotone, S., Hausner, M. & Ruoff, R.S. (2007). Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett 7(12), 35693575.
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J. & Roth, S. (2007). The structure of suspended graphene sheets. Nature 446, 6063.
Nelson, F., Diebold, A.C. & Hull, R. (2010). Simulation study of aberration-corrected high-resolution transmission electron microscopy imaging of few-layer-graphene stacking. Microsc Microanal 16, 194199.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science 306, 666669.
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. & Geim, A.K. (2005). Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30), 1045110453.
Park, S. & Ruoff, R.S. (2009). Chemical methods for the production of graphenes. Nat Nanotechnol 4(4), 217224.
Plachinda, P., Rouvimov, S. & Solanki, R. (2011). Structure analysis of CVD graphene films based on HRTEM contrast simulations. Phys Status Solidi A 208, 26812687.
Reimer, L. & Kohl, H. (2008). Theory of Electron Diffraction in Transmission Electron Microscopy: Physics of Image Formation. Munster: Springer Berlin/Heidelberg. pp. 272328.
Stadelmann, P.A. (1987). EMS—A software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21(2), 131145.
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 15581565.
Wang, G.X., Yang, J., Park, J., Gou, X.L., Wang, B., Liu, H. & Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22), 81928195.
Warner, J.H. (2010). The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy. Nanotechnology 21, 255707.
Widenkvist, E., Boukhvalov, D.W., Rubino, S., Akhtar, S., Lu, J., Quinlan, R.A., Katsnelson, M.I., Leifer, K., Grennberg, H. & Jansson, U. (2009). Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene. J Phys D Appl Phys 42, 112003.
Wu, Z.S., Ren, W.C., Gao, L.B., Liu, B.L., Jiang, C.B. & Cheng, H.M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493499.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed