Skip to main content
×
Home
    • Aa
    • Aa

Simulating STEM Imaging of Nanoparticles in Micrometers-Thick Substrates

  • H. Demers (a1), N. Poirier-Demers (a1), D. Drouin (a1) and N. de Jonge (a2)
Abstract
Abstract

Scanning transmission electron microscope (STEM) images of three-dimensional (3D) samples were simulated. The samples consisted of a micrometer(s)-thick substrate and gold nanoparticles at various vertical positions. The atomic number (Z) contrast as obtained via the annular dark-field detector was generated. The simulations were carried out using the Monte Carlo method in the CASINO software (freeware). The software was adapted to include the STEM imaging modality, including the noise characteristics of the electron source, the conical shape of the beam, and 3D scanning. Simulated STEM images of nanoparticles on a carbon substrate revealed the influence of the electron dose on the visibility of the nanoparticles. The 3D datasets obtained by simulating focal series showed the effect of beam broadening on the spatial resolution and on the signal-to-noise ratio. Monte Carlo simulations of STEM imaging of nanoparticles on a thick water layer were compared with experimental data by programming the exact sample geometry. The simulated image corresponded to the experimental image, and the signal-to-noise levels were similar. The Monte Carlo simulation strategy described here can be used to calculate STEM images of objects of an arbitrary geometry and amorphous sample composition. This information can then be used, for example, to optimize the microscope settings for imaging sessions where a low electron dose is crucial for the design of equipment, or for the analysis of the composition of a certain specimen.

Copyright
Corresponding author
Corresponding author. E-mail: niels.de.jonge@vanderbilt.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D.F. Kyser (1979). Monte Carlo simulation in analytical electron microscopy. In Introduction to Analytical Electron Microscopy, J.J. Hren , J.I. Goldstein & D.C. Joy (Eds.), pp. 199222. New York: Plenum Press.

L. Reimer (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. New York: Springer.

D.B. Williams & C.B. Carter (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 49 *
Loading metrics...

Abstract views

Total abstract views: 235 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th May 2017. This data will be updated every 24 hours.