Skip to main content

Simulating STEM Imaging of Nanoparticles in Micrometers-Thick Substrates

  • H. Demers (a1), N. Poirier-Demers (a1), D. Drouin (a1) and N. de Jonge (a2)

Scanning transmission electron microscope (STEM) images of three-dimensional (3D) samples were simulated. The samples consisted of a micrometer(s)-thick substrate and gold nanoparticles at various vertical positions. The atomic number (Z) contrast as obtained via the annular dark-field detector was generated. The simulations were carried out using the Monte Carlo method in the CASINO software (freeware). The software was adapted to include the STEM imaging modality, including the noise characteristics of the electron source, the conical shape of the beam, and 3D scanning. Simulated STEM images of nanoparticles on a carbon substrate revealed the influence of the electron dose on the visibility of the nanoparticles. The 3D datasets obtained by simulating focal series showed the effect of beam broadening on the spatial resolution and on the signal-to-noise ratio. Monte Carlo simulations of STEM imaging of nanoparticles on a thick water layer were compared with experimental data by programming the exact sample geometry. The simulated image corresponded to the experimental image, and the signal-to-noise levels were similar. The Monte Carlo simulation strategy described here can be used to calculate STEM images of objects of an arbitrary geometry and amorphous sample composition. This information can then be used, for example, to optimize the microscope settings for imaging sessions where a low electron dose is crucial for the design of equipment, or for the analysis of the composition of a certain specimen.

Corresponding author
Corresponding author. E-mail:
Hide All
Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. (2008). STEM tomography for thick biological specimens. Ultramicroscopy 109, 7080.
Bethe, H. (1930). Theory of the passage of fast corpuscular rays through matter. Ann Phys 5(5), 325400.
Bethe, H.A. (1933). Quantenmechanik der Ein- und Zwei-Elektronenprobleme. In Handbuch der Physik, Geiger, J. & Scheel, K. (Eds.), pp. 273560. Berlin: Springer.
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 168, 13381340.
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106, 21592164.
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D.B. & Drouin, D. (2010a). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110(9), 11141119.
de Jonge, N., Sougrat, R., Northan, B. & Pennycook, S.J. (2010b). Three-dimensional scanning transmission electron microscopy for biological specimen. Microsc Microanal 16(1), 5463.
Drouin, D. & Couture, A.R. (2002). Development of a simulation tool for real world SEM applications. Microsc Microanal 8(S2), 702703 (CD-ROM).
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92101.
Frank, L. (2005). Noise in secondary electron emission: The low yield case. J Electron Microsc (Tokyo) 54(4), 361365.
Hohmann-Marriott, M.F., Sousa, A.A., Azari, A., Glushakova, S., Zhang, G., Zimmerberg, J. & Leapman, R.D. (2009). Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6, 729732.
Hovington, P., Drouin, D. & Gauvin, R. (1997). CASINO: A new Monte Carlo code in C language for electron beam interaction—part I: Description of the program. Scanning 19(1), 114.
Hyun, J., Ercius, P., Weyland, M. & Muller, D.A. (2007). Fundamental resolution limit in scanning transmission electron tomography from beam spreading. Microsc Microanal 13(S2), 13301331 (CD-ROM).
Hyun, J.K., Ercius, P. & Muller, D.A. (2008). Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109(1), 17.
Jablonski, A., Salvat, F. & Powell, C.J. (2003). NIST Electron Elastic-Scattering Cross-Section Database—Version 3.1. Washington, DC: National Institute of Standards and Technology.
Joy, D.C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press.
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176180.
Kirkland, E.J. & Thomas, M.G. (1996). A high efficiency annular dark field detector for STEM. Ultramicroscopy 62, 7988.
Kyser, D.F. (1979). Monte Carlo simulation in analytical electron microscopy. In Introduction to Analytical Electron Microscopy, Hren, J.J., Goldstein, J.I. & Joy, D.C. (Eds.), pp. 199222. New York: Plenum Press.
Mueller, S.A. & Engel, A. (2006). Biological scanning transmission electron microscopy: Imaging and single molecule mass determination. Chimia 60, 749753.
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.
Newbury, D.E. & Myklebust, R.L. (1981). A Monte Carlo electron trajectory simulation for analytical electron microscopy. In Analytical Electron Microscopy, Geiss, R.H. (Ed.), pp. 9198. San Francisco, CA: San Francisco Press.
Reichelt, R. & Engel, A. (1984). Monte Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials. Ultramicroscopy 13(3), 279293.
Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. New York: Springer.
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. New York: Springer.
Rose, A. (1948). Television pickup tubes and the problem of noise. Adv Electron 1, 131166.
Salvat, F., Jablonski, A. & Powell, C.J. (2005). ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput Phys Comm 165, 157190.
Sousa, A.A., Hohmann-Marriott, M., Aronova, M.A., Zhang, G. & Leapman, R.D. (2008). Determination of quantitative distributions of heavy-metal stain in biological specimens by annular dark-field STEM. J Struct Biol 162, 1428.
Sousa, A.A., Hohmann-Marriott, M.F., Zhang, G. & Leapman, R.D. (2009). Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections. Ultramicroscopy 109(3), 213221.
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S.J., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104-1034104-3.
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 12
Total number of PDF views: 86 *
Loading metrics...

Abstract views

Total abstract views: 434 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th March 2018. This data will be updated every 24 hours.