Skip to main content Accessibility help
×
×
Home

Single Atom Microscopy

  • Wu Zhou (a1) (a2), Mark P. Oxley (a1) (a2), Andrew R. Lupini (a1) (a2), Ondrej L. Krivanek (a3), Stephen J. Pennycook (a1) (a2) and Juan-Carlos Idrobo (a1) (a2)...
Abstract

We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

Copyright
Corresponding author
* Corresponding author. E-mail: wu.zhou@vanderbilt.edu
**Corresponding author. E-mail: idrobojc@ornl.gov
References
Hide All
Allen, J.E., Hemesath, E.R., Perea, D.E., Lensch-Falk, J.L., Li, Z.Y., Yin, F., Gass, M.H., Wang, P., Bleloch, A.L., Palmer, R.E. & Lauhon, L.J. (2008). High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3, 168173.
Allen, L.J. & Josefsson, T.J. (1995). Inelastic scattering of fast electrons by crystals. Phys Rev B 52, 31843196.
Archard, G.D. (1955). Two new simplified systems for the correction of spherical aberration in electron lenses. Proc Phys Soc B 68, 156164.
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.
Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N. & de Heer, W.A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108, 1991219916.
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1983). 7 × 7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50, 120123.
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci USA 103, 30443048.
Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I. & Cortie, M.B. (2007). Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505.
Browning, N.D., Arslan, I., Erni, R. & Reed, B.W. (2011). Low-loss EELS in the STEM. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 659688. New York: Springer.
Crewe, A.V. (2009). The work of Albert Victor Crewe on the scanning transmission electron microscope and related topics. In Advances in Imaging and Electron Physics: Cold Field Emission and the Scanning Transmission Electron Microscope, Hawkes, P.W. (Ed.), pp. 161. San Diego, CA: Academic Press.
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 168, 13381340.
Deltrap, J.H.M. (1964). Correction of spherical aberration with combined quadrupole-octopole units. 3rd European Conference on Electron Microscopy, Prague, Czech Republic, pp. 45–46. Czechoslovak Academy of Sciences.
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscopy. New York: Springer.
Erni, R. & Browning, N.D. (2005). Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy. Ultramicroscopy 104, 176192.
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.
Guiton, B.S., Iberi, V., Li, S., Leonard, D.N., Parish, C.M., Kotula, P.G., Varela, M., Schatz, G.C., Pennycook, S.J. & Camden, J.P. (2011). Correlated optical measurements and plasmon mapping of silver nanorods. Nano Lett 11, 34823488.
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998b). Electron microscopy image enhanced. Nature 392, 768769.
Herzing, A.A., Kiely, C.J., Carley, A.F., Landon, P. & Hutchings, G.J. (2008). Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 13311335.
Iijima, S. (1977). Observation of single and clusters of atoms in bright field electron-microscopy. Optik 48, 193214.
Isaacson, M., Kopf, D., Utlaut, M., Parker, N.W. & Crewe, A.V. (1977). Direct observations of atomic diffusion by scanning transmission electron microscopy. Proc Natl Acad Sci USA 74, 18021806.
Isaacson, M., Ohtsuki, M. & Utlaut, M. (1979). Can we determine the structure of thin amorphous film using scanning transmission electron microscopy? Proceeding of the 37th Annual EMSA Meeting, San Antonio, TX, pp. 498–501. Electron Microscopy Society of America.
Koch, C.T. (2002). Determination of core structure periodicity and point defect density along dislocations. PhD Thesis. Pheonix, AZ: Arizona State University.
Krivanek, O.L., Chisholm, M.F., Dellby, N. & Murfitt, M.E. (2011). Atomic-resolution STEM at low primary energies. In Scanning Transmission Electron Microsocpy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 615658. New York: Springer.
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010a). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008a). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.
Krivanek, O.L., Dellby, N. & Murfitt, M.F. (2008b). Aberration correction in electron microscopy. In Handbook of Charged Particle Optics, Orloff, J. (Eds.), pp. 601640. Boca Raton, FL: CRC Press.
Krivanek, O.L., Dellby, N., Murfitt, M.F., Chrisholm, M.F., Pennycook, T.J., Suenaga, K. & Nicolosi, V. (2010b). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935945.
Krivanek, O.L., Dellby, N., Spence, A.J., Camps, R.A. & Brown, L.M. (1997). Aberration correction in the STEM. IoP Conference Series No. 153, pp. 35–40. Institute of Physics.
Krivanek, O.L., Zhou, W., Chisholm, M.F., Dellby, N., Lovejoy, T.C., Ramasse, Q.M. & Idrobo, J.C. (2013). Gentle STEM of single atoms: Low keV imaging and analysis at ultimate detection limits. In Low Voltage Electron Microscopy: Principles and Applications, Bell, D. & Erdman, N. (Eds.), pp. 119161. London: John Wiley & Sons.
Langmore, J.P., Isaacson, M.S. & Crewe, A.V. (1974). The study of single heavy atom motion in the STEM. Proceeding of the 32nd Annual EMSA Meeting, St. Louis, MO, pp. 378–379. Electron Microscopy Society of America.
Li, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., Idrobo, J.C., Pennycook, S.J. & Dai, H. (2012). An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7, 394400.
Lovejoy, T.C., Ramasse, Q.M., Falke, M., Kaeppel, A., Terborg, R., Zan, R., Dellby, N. & Krivanek, O.L. (2012). Single atom identification by energy dispersive X-ray spectroscopy. Appl Phys Lett 100, 154101.
Lupini, A.R. & Pennycook, S.J. (2003). Localization in elastic and inelastic scattering. Ultramicroscopy 96, 313322.
Möllenstedt, G. (1956). Elektronenmikroskopische Bilder mit einem nach O. Scherzer sphärisch korrigiertem Objektiv. Optik 13, 209215.
Mory, C., Kohl, H., Tence, M. & Colliex, C. (1991). Experimental investigation of the ultimate EELS spatial resolution. Ultramicroscopy 37, 191201.
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.
Müller, E.W. (1956). Resolution of the atomic structure of a metal surface by the field ion microscope. J Appl Phys 27, 474476.
Nelayah, J., Kociak, M., Stephan, O., Garcia de Abajo, F.J., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzan, L.M. & Colliex, C. (2007). Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3, 348353.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science 306, 666669.
Oh, S.H., van Benthem, K., Molina, S.I., Borisevich, A.Y., Luo, W., Werner, P., Zakharov, N.D., Kurnar, D., Pantelides, S.T. & Pennycook, S.J. (2008). Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett 8, 10161019.
Ortalan, V., Uzun, A., Gates, B.C. & Browning, N.D. (2010). Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat Nanotechnol 5, 506510.
Oxley, M.P. & Allen, L.J. (1998). Delocalization of the effective interaction for inner-shell ionization in crystals. Phys Rev B 57, 32733282.
Pennycook, S.J. (2011). A scan through the history of STEM. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 190. New York: Springer.
Retsky, M. (1974). Observed single atom elastic cross-sections in a scanning electron-microscope. Optik 41, 127142.
Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. & Botton, G.A. (2011). Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett 11, 14991504.
Saito, M., Kimoto, K., Nagai, T., Fukushima, S., Akahoshi, D., Kuwahara, H., Matsui, Y. & Ishizuka, K. (2009). Local crystal structure analysis with 10-pm accuracy using scanning transmission electron microscopy. J Electron Microsc 58, 131136.
Scherzer, O. (1936). Uber einige Fehler von Elektronenlinsen. Z Phys 101, 114132.
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2, 114132.
Schiff, L.I. (1942). Ultimate resolving power of the electron microscope. Phys Rev 61, 721722.
Seeliger, R. (1953). Über die justierung sphärisch korrigierter elektronenoptischer systeme. Optik 10, 2941.
Suenaga, K. & Koshino, M. (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468, 10881090.
Suenaga, K., Sato, Y., Liu, Z., Kataura, H., Okazaki, T., Kimoto, K., Sawada, H., Sasaki, T., Omoto, K., Tomita, T., Kaneyama, T. & Kondo, Y. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat Chem 1, 415418.
Suenaga, K., Tence, T., Mory, C., Colliex, C., Kato, H., Okazaki, T., Shinohara, H., Hirahara, K., Bandow, S. & Iijima, S. (2000). Element-selective single atom imaging. Science 290, 22802282.
Treacy, M.M.J. (2011). Z dependence of electron scattering by single atoms into annular dark-field detectors. Microsc Microanal 17, 847858.
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104.
Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J. & Pennycook, S.J. (2004). Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92, 095502.
Varela, M., Gazquez, J., Pennycook, T.J., Magen, C., Oxley, M.P. & Pennycook, S.J. (2011). Applications of aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy to complex oxide materials. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 429466. New York: Springer.
von Ardenne, M. (1939). Intensitätsfragen und Auflösungsvermögen des Elektronenmikroskops. Z Phys 112, 744752.
Wall, J., Langmore, J., Isaacson, M. & Crewe, A.V. (1974). Scanning-transmission electron-microscopy at high-resolution. Proc Natl Acad Sci USA 71, 15.
Wang, S., Borisevich, A.Y., Rashkeev, S.N., Glazoff, M.V., Sohlberg, K., Pennycook, S.J. & Pantelides, S.T. (2004). Dopants adsorbed as single atoms prevent degradation of catalysts. Nat Mater 3, 143146.
Watanabe, M. (2011). X-ray energy-dispersive spectrometry in scanning tranmission electron microscopes. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 291351. New York: Springer.
Zhou, W., Lee, J., Nanda, J., Pantelides, S.T., Pennycook, S.J. & Idrobo, J.C. (2012a). Atomically localized plasmon enhancement in monolayer graphene. Nat Nanotechnol 7, 161165.
Zhou, W., Pennycook, S.J. & Idrobo, J.C. (2012b). Localization of inelastic electron scattering in the low-loss energy regime. Ultramicroscopy 119, 5156.
Zhou, W., Ross-Medgaarden, E.I., Knowles, W.V., Wong, M.S., Wachs, I.E. & Kiely, C.J. (2009). Identification of active Zr-WOx clusters on ZrO2 support for solid acid catalysts. Nat Chem 1, 722728.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed