Skip to main content
×
×
Home

Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography

  • Sina Baier (a1), Christian D. Damsgaard (a2) (a3), Michael Klumpp (a4), Juliane Reinhardt (a5), Thomas Sheppard (a1) (a6), Zoltan Balogh (a2), Takeshi Kasama (a2), Federico Benzi (a1), Jakob B. Wagner (a2), Wilhelm Schwieger (a4), Christian G. Schroer (a5) (a7) and Jan-Dierk Grunwaldt (a1) (a6)...
Abstract

When using bifunctional core@shell catalysts, the stability of both the shell and core–shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core–shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core–shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author. grunwaldt@kit.edu
References
Hide All
Abu-Dahrieh, J., Rooney, D., Goguet, A. & Saih, Y. (2012). Activity and deactivation studies for direct dimethyl ether synthesis using CuO-ZnO-Al2O3 with NH(4)ZSM-5, HZSM-5 or gamma-Al2O3 . Chem Eng J 203, 201211.
Ahmad, R., Schrempp, D., Behrens, S., Sauer, J., Doering, M. & Arnold, U. (2014). Zeolite-based bifunctional catalysts for the single step synthesis of dimethyl ether from CO-rich synthesis gas. Fuel Process Technol 121, 3846.
Allahyari, S., Haghighi, M., Ebadi, A. & Saeedi, H.Q. (2014). Direct synthesis of dimethyl ether as a green fuel from syngas over nanostructured CuO-ZnO-Al2O3/HZSM-5 catalyst: Influence of irradiation time on nanocatalyst properties and catalytic performance. J Power Sources 272, 929939.
Allard, L.F., Flytzani-Stephanopoulos, M. & Overbury, S.H. (2009). A novel heating technology for ultra-high resolution imaging in electron microscopes. Microsc Today 17(4), 5055.
Andreasen, J.W., Rasmussen, F.B., Helveg, S., Molenbroek, A., Stahl, K., Nielsen, M.M. & Feidenhans’l, R. (2006). Activation of a Cu/ZnO catalyst for methanol synthesis. J Appl Crystallogr 39(2), 209221.
Andrews, J.C. & Weckhuysen, B.M. (2013). Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. ChemPhysChem 14(16), 36553666.
Azizi, Z., Rezaeimanesh, M., Tohidian, T. & Rahimpour, M.R. (2014). Dimethyl ether: A review of technologies and production challenges. Chem Eng Process 82, 150172.
Baier, S., Damsgaard, C.D., Scholz, M., Benzi, F., Rochet, A., Hoppe, R., Scherer, T., Shi, J., Wittstock, A., Weinhausen, B., Wagner, J.B., Schroer, C.G. & Grunwaldt, J.-D. (2016 a). In situ ptychography of heterogeneous catalysts using hard X-rays: High resolution imaging at ambient pressure and elevated temperature. Microsc Microanal 22(1), 178188.
Baier, S., Wittstock, A., Damsgaard, C.D., Diaz, A., Reinhardt, J., Damsgaard, C.D., Benzi, F., Shi, J., Scherer, T., Wang, D., Schroer, C.G. & Grunwaldt, J.-D. (2016 b). Influence of gas atmosphere and ceria layers on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography. RSC Adv 6(86), 8303183043.
Bao, J., He, J., Zhang, Y., Yoneyama, Y. & Tsubaki, N. (2008). A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew Chem 120(2), 359362.
Bao, J., Yang, G., Okada, C., Yoneyama, Y. & Tsubaki, N. (2011). H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas. Appl Catal A Gen 394(1), 195200.
Basile, F., Benito, P., Bugani, S., De Nolf, W., Fornasari, G., Janssens, K., Morselli, L., Scavetta, E., Tonelli, D. & Vaccari, A. (2010). Combined use of synchrotron‐radiation‐based imaging techniques for the characterization of structured catalysts. Adv Funct Mater 20(23), 41174126.
Beckers, M., Senkbeil, T., Gorniak, T., Reese, M., Giewekemeyer, K., Gleber, S.-C., Salditt, T. & Rosenhahn, A. (2011). Chemical contrast in soft X-ray ptychography. Phys Rev Lett 107(20), 208101.
Buurmans, I.L.C. & Weckhuysen, B.M. (2012). Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4(11), 873886.
Cats, K.H., Gonzalez-Jimenez, I.D., Liu, Y., Nelson, J., van Campen, D., Meirer, F., van der Eerden, A.M.J., de Groot, F.M.F., Andrews, J.C. & Weckhuysen, B.M. (2013). X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work. Chem Commun 49(41), 46224624.
Creemer, J.F., Helveg, S., Kooyman, P.J., Molenbroek, A.M., Zandbergen, H.W. & Sarro, P.M. (2010). A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J Microelectromech Syst 19(2), 254264.
da Silva, J.C., Mader, K., Holler, M., Haberthuer, D., Diaz, A., Guizar-Sicairos, M., Cheng, W.-C., Shu, Y., Raabe, J., Menzel, A. & van Bokhoven, J.A. (2015). Assessment of the 3D pore structure and individual components of preshaped catalyst bodies by X-ray imaging. ChemCatChem 7(3), 413416.
Dahmen, N., Henrich, E., Dinjus, E. & Weirich, F. (2012). The Bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy Sustain Soc 2(1), 144.
de Groot, F.M.F., de Smit, E., van Schooneveld, M.M., Aramburo, L.R. & Weckhuysen, B.M. (2010). In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. ChemPhysChem 11(5), 951962.
de Smit, E., Swart, I., Creemer, J.F., Hoveling, G.H., Gilles, M.K., Tyliszczak, T., Kooyman, P.J., Zandbergen, H.W., Morin, C., Weckhuysen, B.M. & de Groot, F.M.F. (2008). Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456(7219), 222239.
de Winter, D.A.M., Meirer, F. & Weckhuysen, B.M. (2016). FIB-SEM tomography probes the mesoscale pore space of an individual catalytic cracking particle. ACS Catal 6(5), 31583167.
Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., Bunk, O. & Pfeiffer, F. (2010). Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314), 436439.
Ding, W., Klumpp, M., Lee, S., Reuss, S., Al-Thabaiti, S.A., Pfeifer, P., Schwieger, W. & Dittmeyer, R. (2015). Simulation of one-stage dimethyl ether synthesis over a core-shell catalyst. Chem Ing Tech 87(6), 702712.
Falcone, R., Jacobsen, C., Kirz, J., Marchesini, S., Shapiro, D. & Spence, J. (2011). New directions in X-ray microscopy. Contemp Phys 52(4), 293318.
Friedrich, H., de Jongh, P.E., Verkleij, A.J. & de Jong, K.P. (2009). Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem Rev 109(5), 16131629.
Garcia-Trenco, A. & Martinez, A. (2015). A rational strategy for preparing Cu-ZnO/H-ZSM-5 hybrid catalysts with enhanced stability during the one-step conversion of syngas to dimethyl ether (DME). Appl Catal A Gen 493, 4049.
Garcia-Trenco, A., Vidal-Moya, A. & Martinez, A. (2012). Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction. Catal Today 179(1), 4351.
Ge, Q.J., Huang, Y.M., Qiu, F.Y. & Li, S.B. (1998). Bifunctional catalysts for conversion of synthesis gas to dimethyl ether. Appl Catal A Gen 167(1), 2330.
Gentzen, M., Habicht, W., Doronkin, D.E., Grunwaldt, J.D., Sauer, J. & Behrens, S. (2016). Bifunctional hybrid catalysts derived from Cu/Zn-based nanoparticles for single-step dimethyl ether synthesis. Catal Sci Technol 6(4), 10541063.
Gonzalez-Jimenez, I.D., Cats, K., Davidian, T., Ruitenbeek, M., Meirer, F., Liu, Y., Nelson, J., Andrews, J.C., Pianetta, P., de Groot, F.M.F. & Weckhuysen, B.M. (2012). Hard X-ray nanotomography of catalytic solids at work. Angew Chem Int Ed 51(48), 1198611990.
Goris, B., Bals, S., Van den Broek, W., Carbó-Argibay, E., Gómez-Graña, S., Liz-Marzán, L.M. & Van Tendeloo, G (2012). Atomic-scale determination of surface facets in gold nanorods. Nat Mater 11(11), 930935.
Grunwaldt, J.-D., Kimmerle, B., Baiker, A., Boye, P., Schroer, C.G., Glatzel, P., Borca, C.N. & Beckmann, F. (2009). Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy. Catal Today 145(3–4), 267278.
Grunwaldt, J.-D., Molenbroek, A.M., Topsoe, N.Y., Topsoe, H. & Clausen, B.S. (2000). In situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194(2), 452460.
Grunwaldt, J.-D. & Schroer, C.G. (2010). Hard and soft X-ray microscopy and tomography in catalysis: Bridging the different time and length scales. Chem Soc Rev 39(12), 47414753.
Grunwaldt, J.-D., Wagner, J.B. & Dunin-Borkowski, R.E. (2013). Imaging catalysts at work. A hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5, 6280.
Güttel, R. (2015). Structuring of reactors and catalysts on multiple scales: Potential and limitations for Fischer‐Tropsch synthesis. Chem Ing Tech 87(6), 694701.
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S. & Topsoe, H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 20532055.
Hansen, T.W. & Wagner, J.B. (2012). Environmental transmission electron microscopy in an aberration-corrected environment. Microsc Microanal 18(4), 684690.
Hayer, F., Bakhtiary-Davijany, H., Myrstad, R., Holmen, A., Pfeifer, P. & Venvik, H.J. (2011). Synthesis of dimethyl ether from syngas in a microchannel reactor—Simulation and experimental study. Chem Eng J 167(2), 610615.
Hofmann, G., Rochet, A., Ogel, E., Casapu, M., Ritter, S., Ogurreck, M. & Grunwaldt, J.-D. (2015). Aging of a Pt/Al2O3 exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography. RSC Adv 5(9), 68936905.
Holler, M., Diaz, A., Guizar-Sicairos, M., Karvinen, P., Farm, E., Harkonen, E., Ritala, M., Menzel, A., Raabe, J. & Bunk, O. (2014). X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Sci Rep 4, 3857.
Holse, C., Elkjaer, C.F., Nierhoff, A., Sehested, J., Chorkendorff, I., Helveg, S. & Nielsen, J.H. (2015). Dynamic behavior of CuZn nanoparticles under oxidizing and reducing conditions. J Phys Chem C 119(5), 28042812.
Hoppe, R., Reinhardt, J., Hofmann, G., Patommel, J., Grunwaldt, J.D., Damsgaard, C.D., Wellenreuther, G., Falkenberg, G. & Schroer, C.G. (2013). High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography. Appl Phys Lett 102(20), 203104-1203104-5.
Høydalsvik, K., Floystad, J.B., Zhao, T., Esmaeili, M., Diaz, A., Andreasen, J.W., Mathiesen, R.H., Ronning, M. & Breiby, D.W. (2014). In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates. Appl Phys Lett 104(24), 24109-124109-5.
Huang, Y., Zhou, X., Yin, M., Liu, C. & Xing, W. (2010). Novel PdAu@Au/C core−shell catalyst: Superior activity and selectivity in formic acid decomposition for hydrogen generation. Chem Mater 22(18), 51225128.
Kalirai, S., Boesenberg, U., Falkenberg, G., Meirer, F. & Weckhuysen, B.M. (2015). X‐ray Fluorescence tomography of aged fluid‐catalytic‐cracking catalyst particles reveals insight into metal deposition processes. ChemCatChem 7(22), 36743682.
Kee, R.J., Zhu, H., Sukeshini, A.M. & Jackson, G.S. (2008). Solid oxide fuel cells: Operating principles, current challenges, and the role of syngas. Combust Sci Technol 180(6), 12071244.
Kruse, N., Machoke, A.G., Schwieger, W. & Güttel, R. (2015). Nanostructured encapsulated catalysts for combination of Fischer–Tropsch synthesis and hydroprocessing. ChemCatChem 7(6), 10181022.
Kuld, S., Thorhauge, M., Falsig, H., Elkjaer, C.F., Helveg, S., Chorkendorff, I. & Sehested, J. (2016). Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352(6288), 969974.
Lee, H., Kim, S., Lee, D.-W. & Lee, K.-Y. (2011). Direct synthesis of hydrogen peroxide from hydrogen and oxygen over a Pd core-silica shell catalyst. Catal Commun 12(11), 968971.
Lee, H.C., Potapova, Y. & Lee, D. (2012). A core-shell structured, metal–ceramic composite-supported Ru catalyst for methane steam reforming. J Power Sources 216, 256260.
Li, J., Pan, X. & Bao, X. (2015 a). Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst. Chinese J Catal 36(7), 11311135.
Li, Q., Xin, C. & Lian, P. (2012). The synthesis and application of CuO-ZnO/HZSM-5 catalyst with core-shell structure. Pet Sci Technol 30(21), 21872195.
Li, Y., Yao, L., Song, Y., Liu, S., Zhao, J., Ji, W. & Au, C.-T. (2010). Core–shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition. Chem Commun 46(29), 52985300.
Li, Y., Zakharov, D., Zhao, S., Tappero, R., Jung, U., Elsen, A., Baumann, P., Nuzzo, R.G., Stach, E.A. & Frenkel, A.I. (2015 b). Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nat Commun 6, 7583.
Maiden, A.M. & Rodenburg, J.M. (2009). An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10), 12561262.
Markötter, H., Manke, I., Krüger, P., Arlt, T., Haussmann, J., Klages, M., Riesemeier, H., Hartnig, C., Scholta, J. & Banhart, J. (2011). Investigation of 3D water transport paths in gas diffusion layers by combined in-situ synchrotron X-ray radiography and tomography. Electrochem Commun 13(9), 10011004.
Matera, S. & Reuter, K. (2012). When atomic-scale resolution is not enough: Spatial effects on in situ model catalyst studies. J Catal 295, 261268.
Meirer, F., Cabana, J., Liu, Y., Mehta, A., Andrews, J.C. & Pianetta, P. (2011). Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat 18(5), 773781.
Meirer, F., Kalirai, S., Weker, J.N., Liu, Y., Andrews, J. & Weckhuysen, B. (2015). Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography. Chem Commun 51(38), 80978100.
Ng, K.M., Gani, R. & Dam-Johansen, K. (2007). Chemical Product Design: Towards a Perspective through Case Studies, vol. 23. Amsterdam: Elsevier Science.
Nie, R., Lei, H., Pan, S., Wang, L., Fei, J. & Hou, Z. (2012). Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether. Fuel 96(1), 419425.
Phienluphon, R., Pinkaew, K., Yang, G., Li, J., Wei, Q., Yoneyama, Y., Vitidsant, T. & Tsubaki, N. (2015). Designing core (Cu/ZnO/Al2O3)-shell (SAPO-11) zeolite capsule catalyst with a facile physical way for dimethyl ether direct synthesis from syngas. Chem Eng J 270, 605611.
Pinkaew, K., Yang, G., Vitidsant, T., Jin, Y., Zeng, C., Yoneyama, Y. & Tsubaki, N. (2013). A new core-shell-like capsule catalyst with SAPO-46 zeolite shell encapsulated Cr/ZnO for the controlled tandem synthesis of dimethyl ether from syngas. Fuel 111, 727732.
Prasad, P.S.S., Bae, J.W., Kang, S.-H., Lee, Y.-J. & Jun, K.-W. (2008). Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: The superiority of ferrierite over the other zeolites. Fuel Process Technol 89(12), 12811286.
Price, S., Ignatyev, K., Geraki, K., Basham, M., Filik, J., Vo, N., Witte, P., Beale, A. & Mosselmans, J. (2015 a). Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT. Phys Chem Chem Phys 17(1), 521529.
Price, S.W.T., Geraki, K., Ignatyev, K., Witte, P.T., Beale, A.M. & Mosselmans, J.F.W. (2015 b). In situ microfocus chemical computed tomography of the composition of a single catalyst particle during hydrogenation of nitrobenzene in the liquid phase. Angew Chem Int Ed 54(34), 98869889.
Sankar, M., Dimitratos, N., Miedziak, P.J., Wells, P.P., Kiely, C.J. & Hutchings, G.J. (2012). Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41(24), 80998139.
Schroer, C.G., Boye, P., Feldkamp, J.M., Patommel, J., Schropp, A., Samberg, D., Stephan, S., Burghammer, M., Schoder, S., Riekel, C., Lengeler, B., Falkenberg, G., Wellenreuther, G., Kuhlmann, M., Frahm, R., Lutzenkirchen-Hecht, D. & Schroeder, W.H. (2010). Hard X-ray microscopy with elemental, chemical, and structural contrast. Acta Phys Polonica A 117(2), 357368.
Schropp, A., Hoppe, R., Patommel, J., Samberg, D., Seiboth, F., Stephan, S., Wellenreuther, G., Falkenberg, G. & Schroer, C.G. (2012). Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes. Appl Phys Lett 100(25), 253112.
Schwieger, W., Klumpp, M., Al‐Thabaiti, S.A. & Hartmann, M. (2016). Präparationsprinzipien mikroporöser Materialien: Vom building block zum hierarchisch aufgebauten porösen System. Chem Ing Tech 88(3), 237257.
Simonsen, S.B., Agersted, K., Hansen, K.V., Jacobsen, T., Wagner, J.B., Hansen, T.W. & Kuhn, L.T. (2015). Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reduction. Appl Catal A Gen 489, 147154.
Stach, E.A., Li, Y., Zhao, S., Gamalski, A., Zakharov, D., Tappero, R., Chen-Weigart, K., Thieme, J., Jung, U. & Elsen, A. (2015). Characterizing working catalysts with correlated electron and photon probes. Microsc Microanal 21(Suppl 3), 563564.
Studt, F., Behrens, M., Kunkes, E.L., Thomas, N., Zander, S., Tarasov, A., Schumann, J., Frei, E., Varley, J.B., Abild-Pedersen, F., Norskov, J.K. & Schlogl, R. (2015). The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7(7), 11051111.
Sun, B., Yu, G., Lin, J., Xu, K., Pei, Y., Yan, S., Qiao, M., Fan, K., Zhang, X. & Zong, B. (2012). A highly selective Raney Fe@HZSM-5 Fischer–Tropsch synthesis catalyst for gasoline production: One-pot synthesis and unexpected effect of zeolites. Catal Sci Technol 2(8), 16251629.
Thomas, J.M. & Hernandez-Garrido, J.-C. (2009). Probing solid catalysts under operating conditions: Electrons or X-rays? Angew Chem Int Ed 48(22), 39043907.
Ulvestad, A., Singer, A., Cho, H.-M., Clark, J.N., Harder, R., Maser, J., Meng, Y.S. & Shpyrko, O.G. (2014). Single particle nanomechanics in operando batteries via lensless strain mapping. Nano Lett 14(9), 51235127.
van Heel, M. & Schatz, M. (2005). Fourier shell correlation threshold criteria. J Struct Biol 151(3), 250262.
Vila-Comamala, J., Diaz, A., Guizar-Sicairos, M., Mantion, A., Kewish, C.M., Menzel, A., Bunk, O. & David, C. (2011). Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging. Opt Express 19(22), 2133321344.
Wang, Y., Wang, W., Chen, Y., Ma, J. & Li, R. (2014). Synthesis of dimethyl ether from syngas over core-shell structure catalyst CuO-ZnO-Al2O3@SiO2-Al2O3 . Chem Eng J 250, 248256.
Wang, Y., Wang, W., Chen, Y., Ma, J., Zheng, J. & Li, R. (2013). Core-shell catalyst CuO-ZnO-Al2O3@Al2O3 for dimethyl ether synthesis from syngas. Chem Lett 42(4), 335337.
Weckhuysen, B.M. (2009). Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem Int Ed 48(27), 49104943.
Xu, L., Peng, H.-G., Zhang, K., Wu, H., Chen, L., Liu, Y. & Wu, P. (2013). Core-shell-structured titanosilicate as a robust catalyst for cyclohexanone ammoximation. ACS Catal 3(1), 103110.
Yang, G., He, J., Yoneyama, Y., Tan, Y., Han, Y. & Tsubaki, N. (2007). Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins. Appl Catal A Gen 329, 99105.
Yang, G., Tsubaki, N., Shamoto, J., Yoneyama, Y. & Zhang, Y. (2010). Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. J Am Chem Soc 132(23), 81298136.
Yang, G., Xing, C., Hirohama, W., Jin, Y., Zeng, C., Suehiro, Y., Wang, T., Yoneyama, Y. & Tsubaki, N. (2013). Tandem catalytic synthesis of light isoparaffin from syngas via Fischer–Tropsch synthesis by newly developed core–shell-like zeolite capsule catalysts. Catal Today 215, 2935.
Yang, X.-Y., Sun, S., Ding, J.-J., Zhang, Y., Zhang, M.-M., Gao, C. & Bao, J. (2012). Preparation, structure and performance of CuO-ZnO-Al2O3/HZSM-5 core-shell bifunctional catalysts for one-step synthesis of dimethyl ether from CO2+H2 . Acta Phys Chim Sin 28(8), 19571963.
Zaera, F. (2013). Nanostructured materials for applications in heterogeneous catalysis. Chem Soc Rev 42(7), 27462762.
Zhong, C.-J. & Maye, M.M. (2001). Core–shell assembled nanoparticles as catalysts. Adv Mater 13(19), 15071511.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Baier supplementary material
Baier supplementary material

 Word (4.4 MB)
4.4 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed