Skip to main content
×
Home

Structure Determination of Atomically Controlled Crystal Architectures Grown within Single Wall Carbon Nanotubes

  • Angus I. Kirkland (a1), Rüdiger R. Meyer (a1), J. Sloan (a2) and J.L. Hutchison (a1)
Abstract

Indirect high resolution electron microscopy using one of several possible data-set geometries offers advantages over conventional high-resolution imaging in enabling the recovery of the complex wavefunction at the specimen exit plane and simultaneously eliminating the aberrations present in the objective lens. This article discusses results obtained using this method from structures formed by inorganic materials confined within the bores of carbon nanotubes. Such materials are shown to be atomically regulated due to their confinement, leading to integral layer architectures that we have termed “Feynman crystals.” These one-dimensional (1D) crystals also show a wide range of structural deviations from the bulk, including unexpected lattice distortions, and in some cases entirely new forms have been observed.

Copyright
Corresponding author
Corresponding author. E-mail: angus.kirkland@materials.ox.ac.uk
References
Hide All

REFERENCES

Antonov, R.D. & Johnson, A.T. (1999). Subband population in a single-wall carbon nanotube diode. Phys Rev Lett 83, 32743276.
Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C. (2001). Logic circuits with carbon nanotube transistors. Science 294, 13171320.
Coene, W.M.J., Janssen, G., Op de Beeck, M., & van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.
Coene, W.M.J., Thust, A., Op de Beeck, M., & van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.
Feynman, R. (1961). There's plenty of room at the bottom: An invitation to enter a new field of physics. In Miniaturization, Gilbert, H.D. (Ed.), pp. 282296. New York: Reinhold.
Kirkland, A.I. & Meyer, R.R. (2004). Indirect high resolution electron microscopy: Aberration measurement and image reconstruction. Microsc Microanal 10, 401413.
Kirkland, A.I., Saxton, W.O., & Chand, G. (1997). Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 1, 1122.
Kirkland, A.I., Saxton, W.O., Chau, K-L., Tsuno, K., & Kawasaki, M. (1995). Super resolution by aperture synthesis: Tilt reconstruction in CTEM. Ultramicroscopy 57, 355374.
Kirkland, A.I. & Sloan, J. (2002). Direct and indirect electron microscopy of encapsulated nanocrystals. Top Catal 21, 139154.
Koster, A.J. & de Ruijter, W.J. (1992). Practical autoalignment of transmission electron microscopes. Ultramicroscopy 40, 89107.
Koster, A.J., de Ruijter, W.J., van den Bos, A., & van der Mast, K.D. (1989). Autotuning of a TEM using minimum electron dose. Ultramicroscopy 27, 251272.
Koster, A.J., van den Bos, A., & van der Mast, K.D. (1987). An autofocus method for a TEM. Ultramicroscopy 21, 209222.
Krivanek, O.L. (1976). A method for determining the coefficient of spherical aberration from a single micrograph. Optik 45, 97101.
Krivanek, O.L. & Leber, M.L. (1994). Autotuning for 1 Å resolution. In Proceedings of the 13th ICEM, Jouffrey, B. & Coliex, C. (Eds.), pp. 157158. Paris: les Editions de Physique.
Kuglin, C.D. & Hines, D.C. (1975). The phase correlation image alignment method. In Proceedings of the IEEE International Conference on Cybernetics and Society, pp. 163165. Piscataway, New Jersey: IEEE Press.
Meyer, R.R., Friedrichs, S., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2003). A composite method for the determination of the chirality of single walled carbon nanotubes. J Microsc 212, 152157.
Meyer, R.R., Kirkland, A.I., & Saxton, W.O. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric abberations. Ultramicroscopy 92, 89109.
Meyer, R.R., Kirkland, A.I., & Saxton, W.O. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of antisymmetric aberrations. Ultramicroscopy 99, 115123.
Meyer, R.R., Sloan, J., Dunin-Borkowski, R., Kirkland, A.I., Novotny, M., Bailey, S., Hutchison, J.L., & Green, M.L.H. (2000). Discrete atom imaging of one dimensional crystals formed within single walled carbon nanotubes. Science 289, 13241326.
Op de Beeck, M., van Dyck, D., & Coene, W. (1996). Wave function reconstruction in HRTEM: The parabola method. Ultramicroscopy 64, 167183.
Pan, M. (1998). TEM autotuning with slow-scan CCD cameras. In Proceedings of the 14th ICEM, Benavidez, H.A.C. & Yacaman, M.J. (Eds.), vol. 1, pp. 263264. Cancun: IoP.
Peigney, A., Coquay, P., Flahaut, E., Vandenberghe, R.E., De Grave, E., & Laurent, C. (2001). A study of the formation of single- and double-walled carbon nanotubes by a CVD method. J Phys Chem B 105, 96999710.
Philp, E., Sloan, J., Kirkland, A.I., Meyer, R.R., Friedrichs, S., Hutchison, J.L., & Green, M.L.H. (2003). An encapsulated helical 1D cobalt iodide crystal. Nat (Mater) 2, 788791.
Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., & Lieber, C.M. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 9497.
Saxton, W.O. (1988). Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. In Image and Signal Processing in Electron Microscopy, Proceedings of the 6th Pfefferkorn Conference, Niagara, Hawkes, P.W., Ottensmeyer, F.P., Saxton, W.O. & Rosenfeld, A. (Eds.), pp. 213224. Chicago: Scanning Microscopy International.
Saxton, W.O. (1995a). Observation of lens aberrations for very high-resolution electron microscopy. I. Theory. J Microsc 179, 201214.
Saxton, W.O. (1995b). Simple prescriptions for estimating three-fold astigmatism. Ultramicroscopy 58, 239243.
Saxton, W.O. (2000). A new way of measuring microscope aberrations. Ultramicroscopy 81, 4144.
Sloan, J., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2002). Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Comm 13, 13191332.
Sloan, J., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2004). Aspects of crystal growth within carbon nanotubes. Comptes Rendu 4, 10631074.
Sloan, J., Novotny, M.C., Bailey, S.R., Brown, G., Xu, C., Williams, V.C., Friedrichs, S., Flahaut, E., Callendar, R.L., York, A.P.E., Coleman, K.S., Green, M.L.H., Dunin-Borkowski, R.E., & Hutchison, J.L. (2000). Two layer 4 : 4 Co-ordinated KI crystals grown within single walled carbon nanotubes. Chem Phys Lett 329, 6165.
Tans, S.J., Verschueren, A.R.M., & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature 393, 4952.
Thust, A., Coene, W.M.J., Op de Beeck, M., & van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.
Thust, A., Jia, C.L., & Urban, K. (2002). Extraction of imaging parameters from the object wave function in phase-retrieval electron microscopy. In Proceedings of the 15th ICEM, Engelbrecht, J., Sewell, T., Witcomb, M., Cross, R. & Richards, P. (Eds.), pp. 167168. Durban, South Africa: Microscopy Society of Southern Africa.
Thust, A., Overwijk, M.H.F., Coene, W.M.J., & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase retrieval HRTEM. Ultramicroscopy 64, 249264.
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.
van Dyck, D., Op de Beeck, M., & Coene, W.M.J. (1993). A new approach to object wave-function reconstruction in electron-microscopy. Optik 93, 103107.
Wilson, M. (2002). Structure and phase stability of novel ‘twisted’ crystal structures in carbon nanotubes. Chem Phys Lett 366, 504509.
Yao, Z., Postma, Ch., Batents, L., & Dekker, C. (1999). Carbon nanotube intramolecular junctions. Nature 402, 273276.
Zandbergen, H.W. & van Dyck, D. (2000). Exit wave reconstructions using through focus series of HREM images. Microsc Res Tech 49, 301323.
Zemlin, F. (1979). A practical procedure for alignment of a high resolution electron microscope. Ultramicroscopy 4, 241245.
Zemlin, F., Weiss, K., Schiske, P., Kunath, W., & Herrmann, K.-H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.
Zhou, C., Kong, J., Yenilmez, E., & Dai, H. (2000). Modulated chemical doping of individual carbon nanotubes. Science 290, 15521555.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 58 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.