Skip to main content
    • Aa
    • Aa

Structure Determination of Atomically Controlled Crystal Architectures Grown within Single Wall Carbon Nanotubes

  • Angus I. Kirkland (a1), Rüdiger R. Meyer (a1), J. Sloan (a2) and J.L. Hutchison (a1)

Indirect high resolution electron microscopy using one of several possible data-set geometries offers advantages over conventional high-resolution imaging in enabling the recovery of the complex wavefunction at the specimen exit plane and simultaneously eliminating the aberrations present in the objective lens. This article discusses results obtained using this method from structures formed by inorganic materials confined within the bores of carbon nanotubes. Such materials are shown to be atomically regulated due to their confinement, leading to integral layer architectures that we have termed “Feynman crystals.” These one-dimensional (1D) crystals also show a wide range of structural deviations from the bulk, including unexpected lattice distortions, and in some cases entirely new forms have been observed.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Antonov, R.D. & Johnson, A.T. (1999). Subband population in a single-wall carbon nanotube diode. Phys Rev Lett83, 32743276.

Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C. (2001). Logic circuits with carbon nanotube transistors. Science294, 13171320.

Coene, W.M.J., Janssen, G., Op de Beeck, M., & van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett69, 37433746.

Coene, W.M.J., Thust, A., Op de Beeck, M., & van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy64, 109135.

Kirkland, A.I. & Meyer, R.R. (2004). Indirect high resolution electron microscopy: Aberration measurement and image reconstruction. Microsc Microanal 10, 401413.

Kirkland, A.I., Saxton, W.O., Chau, K-L., Tsuno, K., & Kawasaki, M. (1995). Super resolution by aperture synthesis: Tilt reconstruction in CTEM. Ultramicroscopy57, 355374.

Kirkland, A.I. & Sloan, J. (2002). Direct and indirect electron microscopy of encapsulated nanocrystals. Top Catal21, 139154.

Koster, A.J. & de Ruijter, W.J. (1992). Practical autoalignment of transmission electron microscopes. Ultramicroscopy40, 89107.

Koster, A.J., de Ruijter, W.J., van den Bos, A., & van der Mast, K.D. (1989). Autotuning of a TEM using minimum electron dose. Ultramicroscopy27, 251272.

Koster, A.J., van den Bos, A., & van der Mast, K.D. (1987). An autofocus method for a TEM. Ultramicroscopy21, 209222.

Meyer, R.R., Friedrichs, S., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2003). A composite method for the determination of the chirality of single walled carbon nanotubes. J Microsc212, 152157.

Meyer, R.R., Kirkland, A.I., & Saxton, W.O. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric abberations. Ultramicroscopy92, 89109.

Meyer, R.R., Kirkland, A.I., & Saxton, W.O. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of antisymmetric aberrations. Ultramicroscopy99, 115123.

Meyer, R.R., Sloan, J., Dunin-Borkowski, R., Kirkland, A.I., Novotny, M., Bailey, S., Hutchison, J.L., & Green, M.L.H. (2000). Discrete atom imaging of one dimensional crystals formed within single walled carbon nanotubes. Science289, 13241326.

Op de Beeck, M., van Dyck, D., & Coene, W. (1996). Wave function reconstruction in HRTEM: The parabola method. Ultramicroscopy64, 167183.

Peigney, A., Coquay, P., Flahaut, E., Vandenberghe, R.E., De Grave, E., & Laurent, C. (2001). A study of the formation of single- and double-walled carbon nanotubes by a CVD method. J Phys Chem B105, 96999710.

Philp, E., Sloan, J., Kirkland, A.I., Meyer, R.R., Friedrichs, S., Hutchison, J.L., & Green, M.L.H. (2003). An encapsulated helical 1D cobalt iodide crystal. Nat (Mater)2, 788791.

Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., & Lieber, C.M. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science289, 9497.

Saxton, W.O. (1995a). Observation of lens aberrations for very high-resolution electron microscopy. I. Theory. J Microsc179, 201214.

Saxton, W.O. (1995b). Simple prescriptions for estimating three-fold astigmatism. Ultramicroscopy58, 239243.

Saxton, W.O. (2000). A new way of measuring microscope aberrations. Ultramicroscopy81, 4144.

Sloan, J., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2004). Aspects of crystal growth within carbon nanotubes. Comptes Rendu4, 10631074.

Sloan, J., Novotny, M.C., Bailey, S.R., Brown, G., Xu, C., Williams, V.C., Friedrichs, S., Flahaut, E., Callendar, R.L., York, A.P.E., Coleman, K.S., Green, M.L.H., Dunin-Borkowski, R.E., & Hutchison, J.L. (2000). Two layer 4 : 4 Co-ordinated KI crystals grown within single walled carbon nanotubes. Chem Phys Lett329, 6165.

Thust, A., Coene, W.M.J., Op de Beeck, M., & van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy64, 211230.

Thust, A., Overwijk, M.H.F., Coene, W.M.J., & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase retrieval HRTEM. Ultramicroscopy64, 249264.

Wilson, M. (2002). Structure and phase stability of novel ‘twisted’ crystal structures in carbon nanotubes. Chem Phys Lett366, 504509.

Zandbergen, H.W. & van Dyck, D. (2000). Exit wave reconstructions using through focus series of HREM images. Microsc Res Tech49, 301323.

Zemlin, F. (1979). A practical procedure for alignment of a high resolution electron microscope. Ultramicroscopy4, 241245.

Zemlin, F., Weiss, K., Schiske, P., Kunath, W., & Herrmann, K.-H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy3, 4960.

Zhou, C., Kong, J., Yenilmez, E., & Dai, H. (2000). Modulated chemical doping of individual carbon nanotubes. Science290, 15521555.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 43 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th June 2017. This data will be updated every 24 hours.