Skip to main content Accessibility help
×
×
Home

Sub-Ångstrom Low-Voltage Performance of a Monochromated, Aberration-Corrected Transmission Electron Microscope

  • David C. Bell (a1) (a2), Christopher J. Russo (a1) (a3) and Gerd Benner (a4)
Abstract

Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: (1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; (2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; (3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-Ångstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science.

Copyright
Corresponding author
Corresponding author. E-mail: dcb@seas.harvard.edu
References
Hide All
Bell, D.C., Lemme, M.C., Stern, L.A., Williams, J.R. & Marcus, C.M. (2009). Precision cutting and patterning of graphene with helium ions. Nanotechnology 20, 455301.
Dahmen, U., Erni, R., Radmilovic, V., Ksielowski, C., Rossell, M.D. & Denes, P. (2009). Background, status and future of the transmission electron aberration-corrected microscope project. Phil Trans R Soc A 367, 37953808.
Essers, E., Benner, G., Mandler, T., Meyer, S., Mittmann, D., Schnell, M. & Höschen, R. (2010). Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter. Ultramicroscopy (doi:10.1016/j.ultramic.2010.02.009).
Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Ksielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G. & Zettl, A. (2009). Graphene at the edge: Stability and dynamics. Science 323, 17051708.
Haider, M. & Schwan, E. (1995). Correction of the spherical aberration of a 200 kV TEM by means of a hexapole-corrector. Optik 99, 167179.
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.
Hawkes, P.W. (2008). Aberration-Corrected Electron Microscopy, Advances in Imaging and Electron Physics, 153. New York: Elsevier.
Hawkes, P.W. & Spence, J.C.H. (Eds.) (2007). Science of Microscopy. New York: Springer.
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J. & Kaiser, U. (2009). Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett 9, 26832689.
Muller, D.A., Kirkland, E.J., Thomas, M.G., Grazul, J.L., Fitting, L. & Weyland, M. (2006). Room design for high-performance electron microscopy. Ultramicroscopy 106, 1112.
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Imaging Formation, 5th ed., Berlin, Heidelberg: Springer.
Rose, H. (2009). Geometrical Charged Particle Optics. Berlin, Heidelberg: Springer.
Smith, B.W. & Luzzi, D.E. (2001). Electron irradiation effects in single wall carbon nanotubes. J Appl Phys 90, 35093515.
Stöger-Pollach, M. & Pongratz, P. (2010). Advantages of low beam energies in a TEM for valence EELS. 16th International Conference on Microscopy of Semiconducting Materials, Journal of Physics Conference Series 209 012031.
Suenaga, K., Wakabayashi, H., Koshino, M., Sato, Y., Urita, K. & Iijima, S. (2007). Imaging active topological defects in carbon nanotubes. Nat Nanotechnol 2, 358360.
van Huis, M.A, Young, N.P., Pandraud, G., Creemer, J.F., Vanmaekelbergh, D., Kirkland, A.I. & Zandbergen, H.W. (2009). Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv Mater 21, 49924995.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed