Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 18
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Close, R. Chen, Z. Shibata, N. and Findlay, S.D. 2015. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy, Vol. 159, p. 124.


    Yamasaki, Jun Mori, Masayuki Hirata, Akihiko Hirotsu, Yoshihiko and Tanaka, Nobuo 2015. Depth-resolution imaging of crystalline nanoclusters attached on and embedded in amorphous films using aberration-corrected TEM. Ultramicroscopy, Vol. 151, p. 224.


    Zheng, Changlin Zhu, Ye Lazar, Sorin and Etheridge, Joanne 2014. Fast Imaging with Inelastically Scattered Electrons by Off-Axis Chromatic Confocal Electron Microscopy. Physical Review Letters, Vol. 112, Issue. 16,


    Hwang, Jinwoo Zhang, Jack Y. D’Alfonso, Adrian J. Allen, Leslie J. and Stemmer, Susanne 2013. Three-Dimensional Imaging of Individual Dopant Atoms inSrTiO3. Physical Review Letters, Vol. 111, Issue. 26,


    Jeong, Jong Seok Ambwani, Palak Jalan, Bharat Leighton, Chris and Mkhoyan, K. Andre 2013. Observation of Electrically-Inactive Interstitials in Nb-Doped SrTiO3. ACS Nano, Vol. 7, Issue. 5, p. 4487.


    Kelly, Thomas F. Miller, Michael K. Rajan, Krishna and Ringer, Simon P. 2013. Atomic-Scale Tomography: A 2020 Vision. Microscopy and Microanalysis, Vol. 19, Issue. 03, p. 652.


    Rouvière, J L Prestat, E Bayle-Guillemaud, P Den Hertog, M Bougerol, C Cooper, D and Zuo, J 2013. Advanced semiconductor characterization with aberration corrected electron microscopes. Journal of Physics: Conference Series, Vol. 471, p. 012001.


    Xin, Huolin L. Dwyer, Christian Muller, David A. Zheng, Haimei and Ercius, Peter 2013. Scanning Confocal Electron Energy-Loss Microscopy Using Valence-Loss Signals. Microscopy and Microanalysis, Vol. 19, Issue. 04, p. 1036.


    Mitsuishi, K. Hashimoto, A. Takeguchi, M. Shimojo, M. and Ishizuka, K. 2012. Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy: II. Point spread function analysis. Ultramicroscopy, Vol. 112, Issue. 1, p. 53.


    Ruben, Gary Cosgriff, Eireann C. D'Alfonso, Adrian J. Findlay, Scott D. LeBeau, James M. and Allen, Leslie J. 2012. Interface location by depth sectioning using a low-angle annular dark field detector. Ultramicroscopy, Vol. 113, p. 131.


    Stroppa, Daniel. G. Zagonel, Luiz F. Montoro, Luciano A. Leite, Edson R. and Ramirez, Antonio J. 2012. High-Resolution Scanning Transmission Electron Microscopy (HRSTEM) Techniques: High-Resolution Imaging and Spectroscopy Side by Side. ChemPhysChem, Vol. 13, Issue. 2, p. 437.


    Wang, Deli Xin, Huolin L. Wang, Hongsen Yu, Yingchao Rus, Eric Muller, David A. DiSalvo, Francis J. and Abruña, Hector D. 2012. Facile Synthesis of Carbon-Supported Pd–Co Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration. Chemistry of Materials, Vol. 24, Issue. 12, p. 2274.


    Xin, Huolin L. and Zheng, Haimei 2012. On-Column 2p Bound State with Topological Charge ±1 Excited by an Atomic-Size Vortex Beam in an Aberration-Corrected Scanning Transmission Electron Microscope. Microscopy and Microanalysis, Vol. 18, Issue. 04, p. 711.


    Xin, Huolin L. Zhu, Ye and Muller, David A. 2012. Determining On-Axis Crystal Thickness with Quantitative Position-Averaged Incoherent Bright-Field Signal in an Aberration-Corrected STEM. Microscopy and Microanalysis, Vol. 18, Issue. 04, p. 720.


    Zhang, Xiaobin Takeguchi, Masaki Hashimoto, Ayako Mitsuishi, Kazutaka Tezuka, Meguru and Shimojo, Masayuki 2012. Improvement of Depth Resolution of ADF-SCEM by Deconvolution: Effects of Electron Energy Loss and Chromatic Aberration on Depth Resolution. Microscopy and Microanalysis, Vol. 18, Issue. 03, p. 603.


    Zhang, X. Takeguchi, M. Hashimoto, A. Mitsuishi, K. Wang, P. Nellist, P. D. Kirkland, A. I. Tezuka, M. and Shimojo, M. 2012. Three-dimensional observation of SiO2 hollow spheres with a double-shell structure using aberration-corrected scanning confocal electron microscopy. Journal of Electron Microscopy,


    Couillard, Martin Radtke, Guillaume Knights, Andrew P. and Botton, Gianluigi A. 2011. Three-Dimensional Atomic Structure of Metastable Nanoclusters in Doped Semiconductors. Physical Review Letters, Vol. 107, Issue. 18,


    Hashimoto, A. Mitsuishi, K. Shimojo, M. Zhu, Y. and Takeguchi, M. 2011. Experimental examination of the characteristics of bright-field scanning confocal electron microscopy images. Journal of Electron Microscopy, Vol. 60, Issue. 3, p. 227.


    ×

Three-Dimensional Imaging in Aberration-Corrected Electron Microscopes

  • Huolin L. Xin (a1) and David A. Muller (a2) (a3)
  • DOI: http://dx.doi.org/10.1017/S1431927610093360
  • Published online: 01 June 2010
Abstract
Abstract

This article focuses on the development of a transparent and uniform understanding of possibilities for three-dimensional (3D) imaging in scanning transmission and confocal electron microscopes (STEMs and SCEMs), with an emphasis on the annular dark-field STEM (ADF-STEM), bright-field SCEM (BF-SCEM), and ADF-SCEM configurations. The incoherent imaging approximation and a 3D linear imaging model for ADF-STEM are reviewed. A 3D phase contrast model for coherent-SCEM as well as a pictorial way to find boundaries of information transfer in reciprocal space are reviewed and applied to both BF- and ADF-SCEM to study their 3D point spread functions and contrast transfer functions (CTFs). ADF-STEM is capable of detecting the depths of dopant atoms in amorphous materials but can fail for crystalline materials when channeling substantially modifies the electron propagation. For the imaging of extended (i.e., nonpointlike) features, ADF-STEM and BF-SCEM exhibit strong elongation artifacts due to the missing cone of information. ADF-SCEM shows an improvement over ADF-STEM/BF-SCEM due to its differential phase contrast eliminating slowly varying backgrounds, an effect that partially suppresses the elongation artifacts. However, the 3D CTF still has a cone of missing information that will result in some residual feature elongation as has been observed in A. Hashimoto et al., J Appl Phys160(8), 086101 (2009).

Copyright
Corresponding author
Corresponding author. E-mail: hx35@cornell.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

L.J. Allen , S.D. Findlay , M.P. Oxley & C.J. Rossouw (2003). Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96(1), 4763.

P.E. Batson , N. Dellby & O.L. Krivanek (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.

G. Black & E.H. Linfoot (1957). Spherical aberration and the information content of optical images. P R Soc Lond A Mat 239(1219), 522540.

E.C. Cosgriff , A.J. D'Alfonso , L.J. Allen , S.D. Findlay , A.I. Kirkland & P.D. Nellist (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part I: Elastic scattering. Ultramicroscopy 108(12), 15581566.

A.J. D'Alfonso , E.C. Cosgriff , S.D. Findlay , G. Behan , A.I. Kirkland , P.D. Nellist & L.J. Allen (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part II: Inelastic scattering. Ultramicroscopy 108(12), 15671578.

C. Dwyer , S.D. Findlay & L.J. Allen (2008). Multiple elastic scattering of core-loss electrons in atomic resolution imaging. Phys Rev B 77(18), 184107.

P. Ercius , M. Weyland , D.A. Muller & L.M. Gignac (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.

S.D. Findlay , L.J. Allen , M.P. Oxley & C.J. Rossouw (2003). Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96(1), 6581.

M. Haider , H. Rose , S. Uhlemann , E. Schwan , B. Kabius & K. Urban (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1), 5360.

M. Haider , S. Uhlemann , E. Schwan , H. Rose , B. Kabius & K. Urban (1998b). Electron microscopy image enhanced. Nature 392(6678), 768769.

A. Hashimoto , M. Shimojo , K. Mitsuishi & M. Takeguchi (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106(8), 086101-1086101-3.

S. Hillyard & J. Silcox (1993). Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52(3–4), 325334.

V. Intaraprasonk , H.L. Xin & D.A. Muller (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108(11), 14541466.

D.A. Muller & J. Silcox (1995). Delocalization in inelastic scattering. Ultramicroscopy 59(1–4), 195213.

H.L. Xin & D.A. Muller (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58(3), 157165.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: