Skip to main content
×
Home

Three-Dimensional Electron Energy Deposition Modeling of Cathodoluminescence Emission near Threading Dislocations in GaN and Electron-Beam Lithography Exposure Parameters for a PMMA Resist

  • Hendrix Demers (a1), Nicolas Poirier-Demers (a1), Matthew R. Phillips (a2), Niels de Jonge (a3) and Dominique Drouin (a1)...
Abstract
Abstract

The Monte Carlo software CASINO has been expanded with new modules for the simulation of complex beam scanning patterns, for the simulation of cathodoluminescence (CL), and for the calculation of electron energy deposition in subregions of a three-dimensional (3D) volume. Two examples are presented of the application of these new capabilities of CASINO. First, the CL emission near threading dislocations in gallium nitride (GaN) was modeled. The CL emission simulation of threading dislocations in GaN demonstrated that a better signal-to-noise ratio was obtained with lower incident electron energy than with higher energy. Second, the capability to simulate the distribution of the deposited energy in 3D was used to determine exposure parameters for polymethylmethacrylate resist using electron-beam lithography (EBL). The energy deposition dose in the resist was compared for two different multibeam EBL schemes by changing the incident electron energy.

Copyright
Corresponding author
* Corresponding author. E-mail: Dominique.Drouin@USherbrooke.ca
Footnotes
Hide All

Current address: INM Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany

Footnotes
References
Hide All
Adesida I., Everhart T.E. & Shimizu R. (1979). High resolution electron-beam lithography on thin films. J Vac Sci Technol 16(6), 17431748.
Aktary M., Stepanova M. & Dew S.K. (2006). Simulation of the spatial distribution and molecular weight of polymethylmethacrylate fragments in electron beam lithography exposures. J Vac Sci Technol B 24(2), 768779.
Babin S., Borisov S., Ivanchikov A. & Ruzavin I. (2006). Modeling of linewidth measurement in SEMs using advanced Monte Carlo software. J Vac Sci Technol B 24(6), 31213124.
Barjon J., Brault J., Daudin B., Jalabert D. & Sieber B. (2003). Cathodoluminescence study of carrier diffusion in AlGaN. J Appl Phys 94(4), 27552757.
Bishop H.E. (1965). A Monte Carlo calculation on the scattering of electrons in copper. Proc Phys Soc 85(5), 855866.
Chen W. & Ahmed H. (1997). Nanofabrication for electronics. In Advances in Imaging and Electron Physics, Hawkes P.W. (Ed.), pp. 87185. New York: Academic Press.
de Jonge N., Poirier-Demers N., Demers H., Peckys D.B. & Drouin D. (2010). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110(9), 11141119.
Demers H., Poirier-Demers N., Couture A.R., Joly D., Guilmain M., de Jonge N. & Drouin D. (2011). Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning 33(3), 135146.
Drouin D., Couture A.R., Joly D., Tastet X., Aimez V. & Gauvin R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92101.
Drouin D., Hovington P. & Gauvin R. (1997). CASINO: A new Monte Carlo code in C language for electron beam interaction—Part II: Tabulated values of Mott cross section. Scanning 19(1), 2028.
Fleischer K., Toth M., Phillips M.R., Zou J., Li G. & Chua S.J. (1999). Depth profiling of GaN by cathodoluminescence microanalysis. J Appl Phys 74(8), 11141116.
Gauvin R. & L'Espérance G. (1992). A Monte Carlo code to simulate the effect of fast secondary electron on k AB factors and spatial resolution in the TEM. J Microsc 168(2), 153167.
Gelhausen O., Phillips M.R. & Toth M. (2001). Depth-resolved cathodoluminescence microanalysis of near-edge emission in III-nitride thin films. J Appl Phys 89(6), 35353537.
Glezos N. & Raptis I. (1996). A fast electron beam lithography simulator based on the Boltzmann transport equation. IEEE T Comput Aid Design Int Circ Syst 15(1), 92102.
Glezos N., Raptis I., Tsoukalas D. & Hatzakis M. (1992). Application of a new analytical technique of electron distribution calculations to the profile simulation of a high sensitivity negative electron-beam resist. J Vac Sci Technol B 10(6), 26062609.
Greeneich J.S. & Duzer T.V. (1974). An exposure model for electron-sensitive resists. IEEE T Electron Dev 21(5), 286299.
Han L., McCord M.A., Winograd G.I. & Pease R.F.W. (1998). Performance investigation of Coulomb interaction-limited high throughput electron beam lithography based on empirical modeling. J Vac Sci Technol B 16(6), 32153220.
Holt D.B. & Napchan E. (1994). Quantification of SEM EBIC and CL signal using Monte Carlo electron-trajectory simulations. Scanning 16(2), 7886.
Hovington P., Drouin D. & Gauvin R. (1997a). CASINO: A new Monte Carlo code in C language for electron beam interaction—Part I: Description of the program. Scanning 19(1), 114.
Hovington P., Drouin D., Gauvin R., Joy D.C. & Evans N. (1997b). CASINO: A new Monte Carlo code in C language for electron beam interaction—Part III: Stopping power at low energies. Scanning 19(1), 2935.
Icard B., Rio D., Veltman P., Kampherbeek B., Constancias C. & Pain L. (2009). Development of resist process for 5-KV multi-beam technology. In Proc SPIE 7271, Schellenberg F.M. & La Fontaine B.M. (Eds.), pp. 72710R. San Jose, CA.
Joy D.C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press.
Joy D.C. & Luo S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11(4), 176180.
Kanaya K. & Okayama S. (1972). Penetration and energy-loss theory of electrons in solid targets. J Phys D Appl Phys 5(1), 4358.
Kim S.-H., Ham Y.-M., Lee W. & Chun K. (1998). New approach of Monte Carlo simulation for low energy electron beam lithography. Microelectron Eng 4142, 179182.
Kyser D.F. & Viswanathan N.S. (1975). Monte Carlo simulation of spatially distributed beams in electron-beam lithography. J Vac Sci Technol 12(6), 13051308.
Liu E.D. & Prescop T. (2011). Optimization of e-beam landing energy for EBDW. In Proc SPIE 7970, Herr D.J.C. (Ed.), pp. 79701S. San Jose, CA.
McCarthy L., Smorchkova I., Xing H., Fini P., Keller S., Speck J., DenBaars S.P., Rodwell M.J.W. & Mishra U.K. (2001). Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors. Appl Phys Lett 78(15), 22352237.
Murata K., Kawata H., Nagami K., Hirai Y. & Mano Y. (1987). Studies of energy dissipation in resist films by a Monte Carlo simulation based on the Mott cross section. J Vac Sci Technol B 5(1), 124128.
Murata K., Kyser D.F. & Ting C.H. (1981). Monte Carlo simulation of fast secondary electron production in electron beam resists. J Appl Phys 52(7), 43964405.
Newbury D.E. & Myklebust R.L. (1981). A Monte Carlo electron trajectory simulation for analytical electron microscopy. In Analytical Electron Microscopy, Geiss R.H. (Ed.), pp. 9198. San Francisco, CA: San Francisco Press.
Nouiri A. & Aouati R. (2008). Monte Carlo model of cathodoluminescence characterization of AlAs/GaAs/AlAs laser diode. Physica E 40(5), 17511753.
Pauc N., Phillips M.R., Aimez V. & Drouin D. (2006). Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence. Appl Phys Lett 89(16), 161905.
Pease R.F. & Chou S.Y. (2008). Lithography and other patterning techniques for future electronics. Proc IEEE 96(2), 248270.
Raptis I., Glezos N. & Hatzakis M. (1993). Analytical evaluation of the energy deposition function in electron-beam lithography in the case of a composite substrate. Proc 16th Int Symp Electron Ion 11(6), 27542757.
Reimer L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Berlin: Springer.
Rose A. (1948). Television pickup tubes and the problem of vision. In Advances in Electronics and Electron Physics, Marton L. (Ed.), pp. 131166. New York: Academic Press.
Schleunitz A., Spreu C., Vogler M., Atasoy H. & Schift H. (2011). Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures. J Vac Sci Technol B 29(6), 06FC01.
Stepanova M., Fito T., Szabó Z., Alti K., Adeyenuwo A.P., Koshelev K., Aktary M. & Dew S.K. (2010). Simulation of electron beam lithography of nanostructures. J Vac Sci Technol B 28(6), C6C48C46C57.
Stoliarov S.I., Westmoreland P.R., Nyden M.R. & Forney G.P. (2003). A reactive molecular dynamics model of thermal decomposition in polymers: I. Poly(methyl methacrylate). Polymer 44(3), 883894.
Toth M. (2006). Microcharacterization of GaN defect structure. PhD Thesis. Sydney, Australia: University of Technology.
Toth M. & Phillips M.R. (1998). Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves. Scanning 20(6), 425432.
Zhou J. & Yang X. (2006). Monte Carlo simulation of process parameters in electron beam lithography for thick resist patterning. J Vac Sci Technol B 24(3), 12021209.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 25
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 222 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.