Skip to main content

The Three-Dimensional Point Spread Function of Aberration-Corrected Scanning Transmission Electron Microscopy

  • Andrew R. Lupini (a1) and Niels de Jonge (a2)

Aberration correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional (3D) imaging by depth sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three dimensions in an attempt to better understand the depth resolution in this mode. Examples are presented of how aberrations change the probe shape in three dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full-width at half-maximum approaches that of the aberration-corrected STEM with a standard aperture.

Corresponding author
Corresponding author. E-mail:
Hide All
Allen J.E., Hemesath E.R., Perea D.E., Lensch-Flak J.L., Li Z.Y., Yin F., Gass M.H., Wang P., Bleloch A.L., Palmer R.E. & Lauhon L.J. (2008). High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3, 168173.
Barth J.E. & Kruit P. (1996). Addition of different contributions to the charged particle probe size. Optik 101, 101109.
Behan G., Cosgriff E.C., Kirkland A.I. & Nellist P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning-transmission electron microscope. Phil Trans R Soc London A 367, 38253844.
Borisevich A.Y., Lupini A.R. & Pennycook S.J. (2006a). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci 103, 30443048.
Borisevich A.Y., Lupini A.R., Travaglini S. & Pennycook S.J. (2006b). Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J Electron Microsc 55, 712.
Born M. & Wolf E. (1959). Principles of Optics. London: Pergamon Press Ltd.
Cosgriff E.C., D'Alfonso A.J., Allen L.J., Findlay S.D., Kirkland A.I. & Nellist P.D. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part I: Elastic scattering. Ultramicroscopy 108, 15581566.
de Jonge N., Sougrat R., Northan B.M. & Pennycook S.J. (2010). Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc Microanal 16, 5463.
Dukes M.J., Ramachandra R., Baudoin J.P., Jerome W.G. & de Jonge N. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174, 552562.
Einspahr J.J. & Voyles P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 10411052.
Erni R. (2010). Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction. London: Imperial College Press.
Fertig J. & Rose H. (1981). Resolution and contrast of crystalline objects in high-resolution scanning transmission electron microscopy. Optik 59, 407429.
Frigo S.P., Levine Z.H. & Zaluzec N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.
Haider M., Rose H., Uhlemann S., Kabius B. & Urban K. (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47, 395405.
Haider M., Uhlemann S. & Zach J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.
Kirkland A.I., Meyer R.R. & Chang L.-Y. S. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.
Kisielowski C., Freitag B., Bischoff M., van Lin H., Lazar S., Knippels G., Tiemeijer P., van der Stam M., von Harrach S., Stekelenburg M., Haider M., Uhlemann S., Mueller H., Hartel P., Kabius B., Miller D., Petrov I., Olson E.A., Donchev T., Kenik E.A., Lupini A.R., Bentley J., Pennycook S.J., Anderson I.M., Minor A.M., Schmid A.K., Duden T., Radmilovic V., Ramasse Q.M., Watanabe M., Erni R., Stach E.A., Denes P. & Dahmen U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.
Krivanek O.L., Dellby N., Keyse R.J., Murfitt M.F., Own C.S. & Szilagyi Z.S. (2008). Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. In Aberration-Corrected Electron Microscopy, Hawkes P.W. (Ed.), pp. 121160. Waltham, MA: Academic Press.
Krivanek O.L., Dellby N. & Lupini A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.
Lupini A.R., Borisevich A., Idrobo J.C., Christen H.M., Biegalski M. & Pennycook S.J. (2009). Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15, 441453.
Mobus G. & Nufer S. (2003). Nanobeam propagation and imaging in a FEGTEM/STEM. Ultramicroscopy 96, 285298.
Mory C., Tence M. & Colliex C. (1985). Theoretical study of the characteristics of the probe for a STEM with a field emission gun. J Microsc Spectrosc Electron 10, 381387.
Nellist P.D. & Pennycook S.J. (1998). Subangstrom resolution by underfocused incoherent transmission electron microscopy. Phys Rev Lett 81(19), 41564159.
Pawley J.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.
Press W.H., Teukolsky S.A., Vetterling W.T. & Flannery B.P. (1988). Numerical Recipes in C: The Art of Scientific Computing. New York: Cambridge University Press.
Rose H. (2008). Optics of high-performance electron microscopes. Sci Technol Adv Mater 9, 130.
van Benthem K., Lupini A.R., Kim M., Baik H.S., Doh S.J., Lee J.H., Oxley M.P., Findlay S.D., Allen L.J. & Pennycook S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104.
Williams D.B., Michael J.R., Goldstein J.I. & Romig A.D. Jr. (1992). Definition of the spatial resolution of X-ray microanalysis in thin foils. Ultramicroscopy 47, 121132.
Xiao Y., Patolsky F., Katz E., Hainfeld J.F. & Willner I. (2003). “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 299, 18771881.
Xin H.L. & Muller D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Elec Microsc 58, 157165.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 172 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.