Skip to main content Accessibility help

Ultracold Electron Source for Single-Shot, Ultrafast Electron Diffraction

  • S.B. van der Geer (a1), M.J. de Loos (a1), E.J.D. Vredenbregt (a1) and O.J. Luiten (a1)


Ultrafast electron diffraction (UED) enables studies of structural dynamics at atomic length and timescales, i.e., 0.1 nm and 0.1 ps, in single-shot mode. At present UED experiments are based on femtosecond laser photoemission from solid state cathodes. These photoemission sources perform excellently, but are not sufficiently bright for single-shot studies of, for example, biomolecular samples. We propose a new type of electron source, based on near-threshold photoionization of a laser-cooled and trapped atomic gas. The electron temperature of these sources can be as low as 10 K, implying an increase in brightness by orders of magnitude. We investigate a setup consisting of an ultracold electron source and standard radio-frequency acceleration techniques by GPT tracking simulations. The simulations use realistic fields and include all pairwise Coulomb interactions. We show that in this setup 120 keV, 0.1 pC electron bunches can be produced with a longitudinal emittance sufficiently small for enabling sub-100 fs bunch lengths at 1% relative energy spread. A transverse root-mean-square normalized emittance of εx = 10 nm is obtained, significantly better than from photoemission sources. Correlations in transverse phase-space indicate that the transverse emittance can be improved even further, enabling single-shot studies of biomolecular samples.


Corresponding author

Corresponding author. E-mail:


Hide All
Barnes, J. & Hut, P. (1986). A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446449.
Billen, J.H. & Young, L.M. (2003). Poisson superfish. Report LA-UR-96-1834, Los Alamos National Laboratory.
Carlsten, B.E. (1989). New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl Instrum Methods Phys Res A 285, 313319.
Chen, Y.C., Simien, C.E., Laha, S., Gupta, P., Martinez, Y.N., Mickelson, P.G., Nagel, S.B. & Killian, T.C. (2004). Electron screening and kinetic-energy oscillations in a strongly coupled plasma. Phys Rev Lett 93, 265003.
Claessens, B.J., Reijnders, M.P., Taban, G., Luiten, O.J. & Vredenbregt, E.J.D. (2007). Cold electron and ion beams generated from trapped atoms. Phys Plasmas 14, 093101.
Claessens, B.J., van der Geer, S.B., Taban, G., Vredenbregt, E.J.D. & Luiten, O.J. (2005). Ultracold electron source. Phys Rev Lett 95, 164801.
Dwyer, R., Hebeisen, C.T., Ernstorfer, R., Harb, M., Deyirmenjian, V.B., Jordan, R.E. & Miller, R.J.D. (2006). Femtosecond electron diffraction: “Making the molecular movie.” Phil Trans R Soc 364, 741778.
Hastings, J.B., Rudakov, F.M., Dowell, D.H., Schmerge, J.F., Cardoza, J.D., Castro, J.M., Gierman, S.M., Loos, H. & Weber, P.M. (2006). Appl Phys Lett 89, 184109.
Kiewiet, F.B., Kemper, A.H., Luiten, O.J., Brussaard, G.J.H. & van der Wiel, M.J. (2002). Femtosecond synchronization of a 3 GHz rf oscillator to a mode-locked Ti:Sapphire laser. Nucl Instrum Methods Phys Res A 484, 619624.
Killian, T.C., Kulin, S., Bergeson, S.D., Orozco, L.A., Orzel, C. & Rolston, S.L. (1999). Creation of an ultracold neutral plasma. Phys Rev Lett 83, 47764779. [For reviews, see Gallagher, T.F. et al. (2003). Back and forth between Rydberg atoms and ultracold plasmas. J Opt Soc Am B 20, 1091–1097; Killian, T.C. (2007). Ultracold neutral plasmas. Science 316, 705–708.]
Kuzmin, S.G. & O'Neil, T.M. (2002). Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation. Phys Rev Lett 88, 065003.
Metcalf, H. & van der Straten, P. (1999). Laser Cooling and Trapping. New York: Springer.
Musumeci, P., Moody, J.T. & Scoby, C.M. (2008). Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory. Ultramicroscopy 108, 14501453.
Serafini, L. & Rosenzweig, J.B. (1997). Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors:mA theory of emittance compensation. Phys Rev E 55, 75657590.
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Science 302, 13821385.
Srinivasan, R., Lobastov, V.A., Ruan, C.-Y. & Zewail, A.H. (2003). Ultrafast electron diffraction (UED) a new development for the 4D determination of transient molecular structures. Helv Chim Act 86, 17631838.
Taban, G., Reijnders, M.P., Bell, S.C., van der Geer, S.B., Luiten, O.J. & Vredenbregt, E.J.D. (2008). Design and validation of an accelerator for an ultracold electron source. Phys Rev ST-AB 11, 050102.
van der Geer, S.B. & de Loos, M.J. (2009). The general particle tracer code. Available at
van Oudheusden, T., de Jong, E.F., van der Geer, S.B., Op 't Root, W.P.E.M., Luiten, O.J. & Siwick, B.J. (2007). Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J Appl Phys 102, 093501.
Ximen, Jiye (1986). Aberration Theory in Electron and Ion Optics. New York: Academic Press.

Related content

Powered by UNSILO

Ultracold Electron Source for Single-Shot, Ultrafast Electron Diffraction

  • S.B. van der Geer (a1), M.J. de Loos (a1), E.J.D. Vredenbregt (a1) and O.J. Luiten (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.