Skip to main content Accessibility help
×
Home
Hostname: page-component-59df476f6b-2p5f9 Total loading time: 0.275 Render date: 2021-05-17T20:45:39.545Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Osbornite, meteoritic titanium nitride

Published online by Cambridge University Press:  14 March 2018

F. A. Bannister
Affiliation:
Mineral Department, British Museum

Extract

Nevil Story-Maskelyne described in 1870 the mineral constituents of the Bustee meteorite, which was observed to fall in 1852 near Bustee about 45 miles west of Goruckpur, India. The stone, weighing 1429 grams, now preserved in the British Museum collections, was found to consist chiefly of enstatite and diopside, and two constituents proved to be new minerals. Pale, chestnut-brown spherules of calcium sulphide, CaS, Story-Maskelyne named oldhamite and golden-yellow octahedra found embedded chiefly in the oldhamite he named osbornite. One side of the meteorite has been ground to reveal the nodules of oldhamite and a coloured lithograph in W. Flight's book ‘A chapter in the history of meteorites’ reproduces the appearance of the chief mineral constituents very well. The minute octahedra of osbornite are easily visible with a lens in the meteorite itself.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1941

Access options

Get access to the full version of this content by using one of the access options below.

References

page 36 note 1 Story-Maskelyne, N., Phil. Trans. Roy. Soc. London, 1870, vol. 160, p. 189; Proc. Roy. Soc. London, 1870, vol. 18, p. 146.Google Scholar

page 36 note 2 N. Story-Maskelyne, Rep. Brit. Assoc. Adv. Sci., 1863, for 1862 (32nd meeting, Cambridge), Trans. of Sections, p. 190. Preliminary note on the Bustee meteorite, with the first mention of the name oldhamite.

page 36 note 3 Flight, W., London, 1887, p. 118; reprinted from Geol. Mag. London, 1875, dec. 2, vol. 2, p. 408, plate facing p. 401Google Scholar

page 37 note 1 Knaggs, I. E. and Karlik, B., Tables of cubic crystal structure of elements and compounds. London, 1932, p. 50. [M.A. 5–171.]Google Scholar

page 37 note 2 Footnote on p. 120 of his book, but not in Geol. Mag. (loc. cit.).

page 38 note 1 Wöhler, F., Annalen der Chemie und Pharmacie, 1850, vol. 73, p. 34.CrossRefGoogle Scholar

page 38 note 2 Spencer, L. J., Min. Mag., 1927, vol. 21, pp. 356 and 364.Google Scholar

page 38 note 3 Wollaston, W. H., Phil. Trans. Roy. Soc. London, 1823, p. 17.Google Scholar

page 39 note 1 Rudge, E. A. and Arnall, F., Journ. Soc. Chem. Industry, Trans., 1928, vol. 47, p. 376.Google Scholar

page 39 note 2 Goldschmidt, V. M., Nachrichten Gesell. Wiss. Göttingen, Math.-Physikal. KI., 1927, p. 390.Google Scholar

page 39 note 3 van Arkel, A. E. and de Boer, J. H., Zeits. Anorg. Chem., 1925, vol. 148, p. 345.CrossRefGoogle Scholar

page 40 note 1 Hogg, T. W., Rep. Brit. Assoc. Adv. Sci., 1894, for 1893 (63rd meeting, Nottingham), p. 721.Google Scholar

page 40 note 2 Hofmann, W. and Schrader, A., Archiv für das Eisenhüttenwesen, 1936, vol. 10, p. 65. (See table II for their X-ray data.)CrossRefGoogle Scholar

page 40 note 3 Stead, J. E., Journ. Iron and Steel Inst. London, 1918, vol. 97, p. 171. Min. Mag. 1919, vol. 18, p. 376. [M.A. 1–231.]Google Scholar

page 42 note 1 Oftedal, I., Zeits. Physikal. Chem., 1927, vol. 128, p. 154.Google Scholar

page 42 note 2 von Hevesy, G., Journ. Chem. Soc. London, 1931, p. 1. [M.A. 4–514.]CrossRefGoogle Scholar

page 43 note 1 Friederich, E., Zeits. Physik, 1925, vol. 31, p. 813.CrossRefGoogle Scholar

page 43 note 2 Ruff, O., Zeits. Anorg. Chem., 1913, vol. 82, p. 373.CrossRefGoogle Scholar

page 43 note 3 Bernal, J. D., Proc. Roy. Soc. London, Ser. A., 1926, vol. 113, p. 117. [M.A. 3–333.]CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Osbornite, meteoritic titanium nitride
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Osbornite, meteoritic titanium nitride
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Osbornite, meteoritic titanium nitride
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *