Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-544bb Total loading time: 0.61 Render date: 2022-07-06T14:31:03.770Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue

The Mesoarchean Amikoq Layered Complex of SW Greenland: Part 2. Geochemical evidence for high-Mg noritic plutonism through crustal assimilation

Published online by Cambridge University Press:  20 May 2021

Emil Aarestrup
Affiliation:
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1165 København K, Denmark
Iain McDonald
Affiliation:
School of Earth & Environmental Sciences, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United Kingdom
Paul E.B. Armitage
Affiliation:
Mkango Resources Ltd, 550 Burrard Street, Suite 2900, VancouverBC V6C0A3, Canada
Allen P. Nutman
Affiliation:
School of Earth, Atmospheric and Life Sciences, University of Wollongong, 2522, NSW, Australia
Ole Christiansen
Affiliation:
Kommune Kujalleq, Anders Olsensvej B 500, 3920 Qaqortoq, Greenland
Kristoffer Szilas*
Affiliation:
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1165 København K, Denmark
*
*Author for correspondence: Kristoffer Szilas, Email: krsz@ign.ku.dk

Abstract

Whole-rock major- and trace-element data are presented on a sample collection from the >3 Ga Amikoq Layered Complex (ALC), and hosting amphibolites within the Mesoarchean Akia terrane, SW Greenland. The lithologies range from leuconorite to melanorite/feldspathic orthopyroxenite, orthopyroxenite to harzburgite through to dunite, and tholeiitic basaltic–picritic mafic host rocks. The Amikoq Layered Complex samples are primitive (Mg#: 65–89) with elevated Ni and Cr contents. However, the absence of troctolitic lithologies and the presence of two orthopyroxene compositional trends, suggests that the successions might not be comagmatic. On the basis of trace-element cumulate models, relatively low Ni contents and minor negative Sr-Eu anomalies in some high-Ti ultramafic rocks, it is not possible to exclude a petrogenesis related to a melt similar to that of the mafic host-rocks. Ultramafic samples with U-shaped trace-element distribution patterns are petrogenetically related to the noritic sequences, either through cumulus mineral accumulation or melt-rock reactions. Assimilation-fractional-crystallisation modelling of melanorites nevertheless require the parental melt to have been contaminated/mixed with a component of island-arc-like tholeiite affinity. A boninite-like parental melt might have been derived from the subcontinental lithospheric mantle of the Akia terrane, or alternatively via assimilation of an ultramafic parental melt with island-arc-like tholeiite. Given the complex geological evolution and high-grade metamorphic overprint of the Amikoq Layered Complex, we are unable to differentiate between the two models.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Craig Storey

References

Aarestrup, E., Jørgensen, T.R., Armitage, P.E., Nutman, A.P., Christiansen, O. and Szilas, K. (2020) The Mesoarchean Amikoq Layered Complex of SW Greenland: Part 1. Constraints on the P–T evolution from igneous, metasomatic and metamorphic amphiboles. Mineralogical Magazine, 84, 662690.CrossRefGoogle Scholar
Adam, J. and Green, T. (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152, 117.CrossRefGoogle Scholar
Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.CrossRefGoogle Scholar
Armitage (2009) PGE Exploration in the Fiskefjord License, Southern West Greenland (2008). NunaMinerals A/S company report. Archived as GEUS report file 100006.Google Scholar
Armitage (2010) Exploration in the Amikoq sub-area of licence 2005/16 Fiskevandet, southern West Greenland (2009). NunaMinerals A/S company report. Archived as GEUS report file 22146.Google Scholar
Arndt, N.T. (1994) Archean komatiites. Archean Crustal Evolution, 10, 1144.CrossRefGoogle Scholar
Arndt, N. (2003) Komatiites, kimberlites, and boninites. Journal of Geophysical Research, 108, 2293.CrossRefGoogle Scholar
Bacon, C.R. and Druitt, T.H. (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98, 224256.CrossRefGoogle Scholar
Baker, D.R. and Eggler, D.H. (1983) Fractionation paths of Atka (Aleutians) high-alumina basalts: constraints from phase relations. Journal of Volcanology and Geothermal Research, 18, 387404.CrossRefGoogle Scholar
Barnes, S.J. (1989) Are Bushveld U-type parent magmas boninites or contaminated komatiites? Contributions to Mineralogy and Petrology, 101, 447457.CrossRefGoogle Scholar
Barnes, S.J., Maier, W.D. and Curl, E.A. (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Economic Geology, 105, 14911511.CrossRefGoogle Scholar
Barr, J.A., Grove, T.L. and Wilson, A.H. (2009) Hydrous komatiites from Commondale, South Africa: an experimental study. Earth and Planetary Science Letters, 284, 199207.CrossRefGoogle Scholar
Bédard, J.H. (2018) Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geoscience Frontiers, 9, 1949.CrossRefGoogle Scholar
Berndt, J., Koepke, J. and Holtz, F. (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology, 46, 135167.CrossRefGoogle Scholar
Bernstein, S., Kelemen, P.B. and Hanghøj, K. (2007) Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology, 35, 459462.CrossRefGoogle Scholar
Bernstein, S., Szilas, K. and Kelemen, P.B. (2013) Highly depleted cratonic mantle in West Greenland extending into diamond stability field in the Proterozoic. Lithos, 168, 160172.CrossRefGoogle Scholar
Bodinier, J.-L. and Godard, M. (2014) Orogenic, ophiolitic, and abyssal peridotites. P. 9144 in: Treatise on Geochemistry, 2. (Turekian, K. and Holland, H., editors). Elsevier Science.Google Scholar
Cameron, W.E., McCulloch, M.T. and Walker, D.A. (1983) Boninite petrogenesis: chemical and Nd-Sr isotopic constraints. Earth and Planetary Science Letters, 65, 7589.CrossRefGoogle Scholar
Canil, D. and Fedortchouk, Y. (2001) Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. The Canadian Mineralogist, 39, 319330.CrossRefGoogle Scholar
Chauvel, C. and Blichert-Toft, J. (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190, 137151.CrossRefGoogle Scholar
Crawford, A.J., Falloon, T.J. and Green, D.H. (1989) Classification, petrogenesis and tectonic setting of boninites. Pp. 149 in: Boninites and Related Rocks (Crawford, A.J., editor). Unwin Hyman, London.Google Scholar
Danyushevsky, L.V. (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. Journal of Volcanology and Geothermal Research, 110, 265280.CrossRefGoogle Scholar
DePaolo, D.J. (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53, 189202.CrossRefGoogle Scholar
Dunn, T. and Sen, C. (1994) Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochimica et Cosmochimica Acta, 58, 717733.CrossRefGoogle Scholar
Dziggel, A., Kokfelt, T.F., Kolb, J., Kisters, A.F.M. and Reifenröther, R. (2017) Tectonic switches and the exhumation of deep-crustal granulites during Neoarchean terrane accretion in the area around Grædefjord, SW Greenland. Precambrian Research, 300, 223245.CrossRefGoogle Scholar
Eales, H.V. and Cawthorn, R.G. (1996) The Bushveld Complex. Pp. 181229 in: Developments in Petrology. Vol. 15. Elsevier.Google Scholar
Eales, H.V., Botha, W.J., Hattingh, P.J., De Klerk, W.J., Maier, W.D. and Odgers, A.T.R. (1993) The mafic rocks of the Bushveld Complex: a review of emplacement and crystallization history, and mineralization, in the light of recent data. Journal of African Earth Sciences (and the Middle East), 16, 121142.CrossRefGoogle Scholar
Elkins, L.J., Gaetani, G.A. and Sims, K.W.W. (2008) Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth and Planetary Science Letters, 265, 270286.CrossRefGoogle Scholar
Escher, A. and Watt, W.S. (1976) Geology of Greenland (Vol. 603). Geological Survey of Greenland, Copenhagen:Google Scholar
Falloon, T.J., Green, D.H. and McCulloch, M.T. (1989) Petrogenesis of high-Mg and associated lavas from the north Tonga trench. Pp. 357395 in: Boninites and Related Rocks (Crawford, A.J., editor). Unwin Hyman, London.Google Scholar
Fettes, D. and Desmons, J. (editors) (2011) Metamorphic rocks: a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks. Cambridge University Press, UK.Google Scholar
Friend, C.R.L. and Nutman, A.P. (1994) Two Archaean granulite-facies metamorphic events in the Nuuk–Maniitsoq region, southern West Greenland: correlation with the Saglek block, Labrador. Journal of the Geological Society, 151, 421424.CrossRefGoogle Scholar
Friend, C.R.L., Nutman, A.P., Baadsgaard, H., Kinny, P.D. and McGregor, V.R. (1996) Timing of late Archaean terrane assembly, crustal thickening and granite emplacement in the Nuuk region, southern West Greenland. Earth and Planetary Science Letters, 142, 353365.CrossRefGoogle Scholar
Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y. and Schilling, J.G. (2013) The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14, 489518.CrossRefGoogle Scholar
Garde, A.A. (1989) Geological Map of Greenland, 1: 100 000, Fiskefjord 64 V. 1 Nord. Geological Survey of Greenland, Copenhagen.Google Scholar
Garde, A.A. (1990) Thermal granulite-facies metamorphism with diffuse retrogression in Archaean orthogneisses, Fiskefjord, southern West Greenland. Journal of Metamorphic Geology, 8, 663682.CrossRefGoogle Scholar
Garde, A.A. (1997) Accretion and Evolution of an Archaean High-Grade Grey Gneiss–Amphibolite Complex: The Fiskefjord Area, Southern West Greenland. Geological Survey of Denmark and Greenland, Ministry of Environment and Energy, Copenhagen. Volume 177.Google Scholar
Garde, A.A. (2007) A mid-Archaean island arc complex in the eastern Akia terrane, Godthåbsfjord, southern West Greenland. Journal of the Geological Society, 164, 565579.CrossRefGoogle Scholar
Garde, A.A., Friend, C.R., Nutman, A.P. and Marker, M. (2000) Rapid maturation and stabilisation of middle Archaean continental crust: the Akia terrane, southern West Greenland. Bulletin of the Geological Society of Denmark, 47, 127.CrossRefGoogle Scholar
Gardiner, N.J., Kirkland, C.L., Hollis, J., Szilas, K., Steenfelt, A., Yakymchuk, C. and Heide-Jørgensen, H. (2019) Building Mesoarchaean crust upon Eoarchaean roots: the Akia Terrane, West Greenland. Contributions to Mineralogy and Petrology, 174, 20.CrossRefGoogle Scholar
Gardiner, N. J., Kirkland, C.L., Hollis, J.A., Cawood, P.A., Nebel, O., Szilas, K., and Yakymchuk, C. (2020) North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons. Earth and Planetary Science Letters, 534, 116091.CrossRefGoogle Scholar
Guotana, J.M., Morishita, T., Yamaguchi, R., Nishio, I., Tamura, A., Tani, K., Harigane, Y., Szilas, K. and Pearson, D.G. (2018) Contrasting textural and chemical signatures of chromitites in the Mesoarchaean Ulamertoq peridotite body, southern West Greenland. Geosciences, 8, 328.CrossRefGoogle Scholar
Hall, R.P. and Hughes, D.J. (1987) Noritic dykes of southern West Greenland: early Proterozoic boninitic magmatism. Contributions to Mineralogy and Petrology, 97, 169182.CrossRefGoogle Scholar
Harmer (2009) Report: Geological Consulting: Field Work for NunaMinerals 12. June – 2. July 2009. NunaMinerals A/S internal company report.Google Scholar
Hatton, C.J. and Sharpe, M.R. (1989) Significance and origin of boninite-like rocks associated with the Bushveld Complex. Pp. 174208 in: Boninites and Related Rocks (Crawford, A.J., editor). Unwin Hyman, London.Google Scholar
Herzberg, C., Condie, K. and Korenaga, J. (2010) Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292, 7988.CrossRefGoogle Scholar
Herzberg, C., Vidito, C. and Starkey, N.A. (2016) Nickel-cobalt contents of olivine record origins of mantle peridotite and related rocks. American Mineralogist, 101, 19521966.CrossRefGoogle Scholar
Huang, H., Polat, A., Fryer, B.J., Appel, P.W. and Windley, B.F. (2012) Geochemistry of the Mesoarchean Fiskenæsset Complex at Majorqap qâva, SW Greenland: Evidence for two different magma compositions. Chemical Geology, 314, 6682.CrossRefGoogle Scholar
Irvine, T.N., Keith, D.W. and Todd, S.G. (1983) The JM platinum-palladium reef of the Stillwater Complex, Montana; II, Origin by double-diffusive convective magma mixing and implications for the Bushveld Complex. Economic Geology, 78, 12871334.CrossRefGoogle Scholar
Jagoutz, O., Müntener, O., Burg, J.P., Ulmer, P. and Jagoutz, E. (2006) Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth and Planetary Science Letters, 242, 320342.CrossRefGoogle Scholar
Kennedy, A.K., Lofgren, G.E. and Wasserburg, G.J. (1993) An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth and Planetary Science Letters, 115, 177195.CrossRefGoogle Scholar
Kirkland, C.L., Yakymchuk, C., Szilas, K., Evans, N., Hollis, J., McDonald, B. and Gardiner, N.J. (2018) Apatite: a U–Pb thermochronometer or geochronometer? Lithos, 318, 143157.CrossRefGoogle Scholar
Kirkland, C.L., Yakymchuk, C., Gardiner, N.J., Szilas, K., Hollis, J., Olierook, H. and Steenfelt, A. (2020) Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland. Chemical Geology, 536, 119467.CrossRefGoogle Scholar
Klausen, M.B., Szilas, K., Kokfelt, T.F., Keulen, N., Schumacher, J.C. and Berger, A. (2017) Tholeiitic to calc-alkaline metavolcanic transition in the Archean Nigerlikasik Supracrustal Belt, SW Greenland. Precambrian Research, 302, 5073.CrossRefGoogle Scholar
König, S., Münker, C., Schuth, S. and Garbe-Schönberg, D. (2008) Mobility of tungsten in subduction zones. Earth and Planetary Science Letters, 274, 8292.CrossRefGoogle Scholar
König, S., Münker, C., Schuth, S., Luguet, A., Hoffmann, J.E. and Kuduon, J. (2010) Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta, 74, 684704.CrossRefGoogle Scholar
Lassen, B. (2006) Mineral Exploration Around Fiskefjord, Southern West Greenland – License No 2005/16 – May to September 2006. NunaMinerals A/S company report, unpublished.Google Scholar
LaTourrette, T., Hervig, R.L. and Holloway, J.R. (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 135, 1330.CrossRefGoogle Scholar
Latypov, R., Chistyakova, S., Grieve, R. and Huhma, H. (2019) Evidence for igneous differentiation in Sudbury Igneous Complex and impact-driven evolution of terrestrial planet proto-crusts. Nature Communications, 10, 508.CrossRefGoogle ScholarPubMed
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J. and Lamere, J. (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences. Subcommission on the Systematics of Igneous rocks, Cambridge University Press, UK.CrossRefGoogle Scholar
Li, C., Arndt, N.T., Tang, Q. and Ripley, E.M. (2015) Trace element indiscrimination diagrams. Lithos, 232, 7683.CrossRefGoogle Scholar
Maier, W.D., Arndt, N.T. and Curl, E.A. (2000) Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks. Contributions to Mineralogy and Petrology, 140, 316327.CrossRefGoogle Scholar
McCallum, I.S. (1996) The Stillwater complex. Pp. 441483 in: Layered intrusions (Cawthorn, R.G., editor). Developments in Petrology, 15. https://doi.org/10.1016/S0167-2894(96)80015-7CrossRefGoogle Scholar
McDonald, I. and Viljoen, K.S. (2006) Platinum-group element geochemistry of mantle eclogites: a reconnaissance study of xenoliths from the Orapa kimberlite, Botswana. Applied Earth Science, 115, 8193.CrossRefGoogle Scholar
McIntyre, T., Pearson, D.G., Szilas, K. and Morishita, T. (2019) Implications for the origins of Eoarchean ultramafic rocks of the North Atlantic Craton: a study of the Tussaap Ultramafic complex, Itsaq Gneiss complex, southern West Greenland. Contributions to Mineralogy and Petrology, 174, 121.CrossRefGoogle Scholar
McKenzie, D.A.N. and O'nions, R.K. (1991) Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32, 10211091.CrossRefGoogle Scholar
Müntener, O., Kelemen, P.B. and Grove, T.L. (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology, 141, 643658.CrossRefGoogle Scholar
Myers, J.S. (1985) Stratigraphy and structure of the Fiskenæsset Complex, southern West Greenland. Bulletin Grønlands geologiske undersøgelse, 150, 172.CrossRefGoogle Scholar
Niida, K. and Green, D.H. (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135, 1840.CrossRefGoogle Scholar
Nilsson, M.K., Söderlund, U., Ernst, R.E., Hamilton, M.A., Scherstén, A. and Armitage, P.E. (2010) Precise U–Pb baddeleyite ages of mafic dykes and intrusions in southern West Greenland and implications for a possible reconstruction with the Superior craton. Precambrian Research, 183, 399415.CrossRefGoogle Scholar
Nilsson, M.K.M., Klausen, M.B., Söderlund, U. and Ernst, R.E. (2013) Precise U–Pb ages and geochemistry of Palaeoproterozoic mafic dykes from southern West Greenland: linking the North Atlantic and the Dharwar cratons. Lithos, 174, 255270.CrossRefGoogle Scholar
Nishio, I., Morishita, T., Szilas, K., Pearson, G., Tani, K.I., Tamura, A., Szilas, K. and Guotana, J.M. (2019) Titanian clinohumite-bearing peridotite from the Ulamertoq Ultramafic Body in the 3.0 Ga Akia Terrane of Southern West Greenland. Geosciences, 9, 153.CrossRefGoogle Scholar
Nutman, A.P., Hagiya, H. and Maruyama, S. (1995) SHRIMP U–Pb single zircon geochronology of a Proterozoic mafic dyke, Isukasia, southern West Greenland. Bulletin of the Geological Society of Denmark, 42, 1722.CrossRefGoogle Scholar
Nutman, A.P., Friend, C.R., Bennett, V.C. and McGregor, V.R. (2004) Dating of the Ameralik dyke swarms of the Nuuk district, southern West Greenland: mafic intrusion events starting from c. 3510 Ma. Journal of the Geological Society, 161, 421430.CrossRefGoogle Scholar
Nutman, A.P., Bennett, V.C., Friend, C.R., Yi, K. and Lee, S.R. (2015) Mesoarchaean collision of Kapisilik terrane 3070 Ma juvenile arc rocks and > 3600 Ma Isukasia terrane continental crust (Greenland). Precambrian Research, 258, 146160.CrossRefGoogle Scholar
Olierook, H.K., Kirkland, C.L., Szilas, K., Hollis, J.A., Gardiner, N.J., Steenfelt, A., Jiang, Q., Yakymchuk, C., Evans, N.J. and McDonald, B.J., (2020) Differentiating between inherited and autocrystic zircon in granitoids. Journal of Petrology, 61, 081.CrossRefGoogle Scholar
Palin, R.M., Santosh, M., Cao, W., Li, S.S., Hernández-Uribe, D. and Parsons, A. (2020) Secular metamorphic change and the onset of plate tectonics. Earth-Science Reviews, 103172.CrossRefGoogle Scholar
Palme, H. and O'Neill, H.S.C. (2003) Cosmochemical estimates of mantle composition. P. 568 in: Treatise on Geochemistry, 2. (Turekian, K. and Holland, H., editors). Elsevier Science.Google Scholar
Pearce, J.A. and Reagan, M.K. (2019) Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si–Mg–Ti systematics. Geosphere, 15, 10081037.CrossRefGoogle Scholar
Pearce, J.A., van der Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, D.W. and Parkinson, I.J. (1992) Boninite and harzburgite from Leg 125 (Bonin–Mariana forearc): A case study of magma genesis during the initial stages of subduction. Pp. 623659 in: Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 125. Ocean Drilling Program, College Station, Texas, USA.Google Scholar
Peters, S.T., Szilas, K., Sengupta, S., Kirkland, C.L., Garbe-Schönberg, D. and Pack, A. (2020) > 2.7 Ga metamorphic peridotites from southeast Greenland record the oxygen isotope composition of Archean seawater. Earth and Planetary Science Letters, 544, 116331.CrossRefGoogle Scholar
Pilet, S., Baker, M.B., Müntener, O. and Stolper, E.M. (2011) Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. Journal of Petrology, 52, 14151442.CrossRefGoogle Scholar
Polat, A., Hofmann, A.W. and Rosing, M.T. (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184, 231254.CrossRefGoogle Scholar
Polat, A., Wang, L. and Appel, P.W. (2015) A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics, 662, 6794.CrossRefGoogle Scholar
Polat, A., Longstaffe, F.J. and Frei, R. (2018) An overview of anorthosite-bearing layered intrusions in the Archaean craton of southern West Greenland and the Superior Province of Canada: implications for Archaean tectonics and the origin of megacrystic plagioclase. Geodinamica Acta, 30, 8499.CrossRefGoogle Scholar
Presnall, D.C., Dixon, S.A., Dixon, J.R., O'donnell, T.H., Brenner, N.L., Schrock, R.L. and Dycus, D.W. (1978) Liquidus phase relations on the join diopside–forsterite–anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contributions to Mineralogy and Petrology, 66, 203220.CrossRefGoogle Scholar
Riciputi, L.R., Valley, J.W. and McGregor, V.R. (1990) Conditions of Archean granulite metamorphism in the Godthab-Fiskenaesset region, southern West Greenland. Journal of Metamorphic Geology, 8, 171190.CrossRefGoogle Scholar
Sisson, T.W. and Grove, T.L. (1993) Experimental investigations of the role of H 2 O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113, 143166.CrossRefGoogle Scholar
Sizova, E., Gerya, T., Brown, M. and Perchuk, L.L. (2010) Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116, 209229.CrossRefGoogle Scholar
Sossi, P.A., Eggins, S.M., Nesbitt, R.W., Nebel, O., Hergt, J.M., Campbell, I.H., O'Neill, H.S.C., Van Kranendonk, M. and Davies, D.R. (2016) Petrogenesis and geochemistry of Archean komatiites. Journal of Petrology, 57, 147184.CrossRefGoogle Scholar
Sparks, R.S.J. (1986) The role of crustal contamination in magma evolution through geological time. Earth and Planetary Science Letters, 78, 211223.CrossRefGoogle Scholar
Steenfelt, A., Garde, A.A. and Moyen, J.F. (2005) Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland. Lithos, 79, 207228.CrossRefGoogle Scholar
Steenfelt, A., Hollis, J., Kirkland, C.L., Sandrin, A., Gardiner, N.J., Olierook, H.K.H., Szilas, K., Wateron, P. and Yakymchuk, C. (2020) The Mesoarchaean Akia terrane, West Greenland, revisited: New insights based on spatial integration of geophysics, field observation, geochemistry and geochronology. Precambrian Research, 105958.Google Scholar
Stracke, A., Zindler, A., Salters, V.J., McKenzie, D., Blichert-Toft, J., Albarède, F. and Grönvold, K. (2003) Theistareykir revisited. Geochemistry, Geophysics, Geosystems, 4, 8507, doi:10.1029/2001GC000201CrossRefGoogle Scholar
Sun, S.-S., Nesbitt, R.W. and McCulloch, M.T. (1989) Geochemistry and petrogenesis of Archaean and early Proterozoic siliceous high-magnesian basalts. Pp. 149173 in: Boninites and Related Rocks (Crawford, A.J., editor). Unwin Hyman, London.Google Scholar
Szilas, K. (2018) A geochemical overview of mid-Archaean metavolcanic rocks from southwest Greenland. Geosciences, 8, 266.CrossRefGoogle Scholar
Szilas, K., Næraa, T., Scherstén, A., Stendal, H., Frei, R., van Hinsberg, V.J. and Rosing, M.T. (2012a) Origin of Mesoarchaean arc-related rocks with boninite/komatiite affinities from southern West Greenland. Lithos, 144, 2439.CrossRefGoogle Scholar
Szilas, K., Hoffmann, J.E., Scherstén, A., Rosing, M.T., Windley, B.F., Kokfelt, T.F., Keulen, N., van Hinsberg, V.J., Næraa, T., Frei, R. and Münker, C. (2012b) Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshåb Isblink, southern West Greenland: Implications for subduction zone processes in the early Earth. Precambrian Research, 208, 90123.CrossRefGoogle Scholar
Szilas, K., Kelemen, P.B. and Bernstein, S. (2015a) Peridotite enclaves hosted by Mesoarchaean TTG–suite orthogneisses in the Fiskefjord region of southern West Greenland. GeoResJ, 7, 2234.CrossRefGoogle Scholar
Szilas, K., Kelemen, P.B. and Rosing, M.T. (2015b) The petrogenesis of ultramafic rocks in the > 3.7 Ga Isua supracrustal belt, southern West Greenland: Geochemical evidence for two distinct magmatic cumulate trends. Gondwana Research, 28, 565580.CrossRefGoogle Scholar
Szilas, K., Hoffmann, J.E., Schulz, T., Hansmeier, C., Polat, A., Viehmann, S. and Münker, C. (2016) Combined bulk-rock Hf-and Nd-isotope compositions of Mesoarchaean metavolcanic rocks from the Ivisaartoq Supracrustal Belt, SW Greenland: Deviations from the mantle array caused by crustal recycling. Geochemistry, 76, 543554.CrossRefGoogle Scholar
Szilas, K., Tusch, J., Hoffmann, J.E., Garde, A.A. and Münker, C. (2017) Hafnium isotope constraints on the origin of Mesoarchaean andesites in southern West Greenland, North Atlantic Craton. Geological Society, London, Special Publications, 449, 1938.CrossRefGoogle Scholar
Szilas, K., van Hinsberg, V., McDonald, I., Næraa, T., Rollinson, H., Adetunji, J. and Bird, D. (2018) Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers, 9, 689714.CrossRefGoogle Scholar
Tappe, S., Smart, K.A., Pearson, D.G., Steenfelt, A. and Simonetti, A. (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology, 39, 11031106.CrossRefGoogle Scholar
Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B. and Croudace, I.W. (1994) Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, 35, 577617.CrossRefGoogle Scholar
Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R. and Foley, S.F. (2007) Trace-element partitioning between amphibole and silicate melt. Pp. 417452 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, H., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, Vol. 67. American Society of Mineralogy and the Geochemical Society, Chantilly, Virginia, USA. https://doi.org/10.2138/rmg.2007.67.11CrossRefGoogle Scholar
Todd, E., Gill, J.B. and Pearce, J.A. (2012) A variably enriched mantle wedge and contrasting melt types during arc stages following subduction initiation in Fiji and Tonga, southwest Pacific. Earth and Planetary Science Letters, 335, 180194.CrossRefGoogle Scholar
Van der Laan, S.R., Flower, M.F.J. and Koster van Groos, A.F. (1989) Experimental evidence for the origin of boninites: near-liquidus phase relations to 7.5 kbar. Boninites and Related Rocks (A.J. Crawford, editor). Unwin Hyman, London.Google Scholar
Van der Laan, S.R., Arculus, R.J., Pearce, J.A. and Murton, B.J. (1992) Petrography, mineral chemistry, and phase relations of the basement boninite series of Site 786, Izu–Bonin forearc. Pp. 171201 in: Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 125. Ocean Drilling Program College station, Texas, USA.Google Scholar
Van Hinsberg, V., Crotty, C., Roozen, S., Szilas, K. and Kisters, A. (2018) Pressure–temperature history of the > 3 Ga Tartoq Greenstone Belt in Southwest Greenland and its implications for Archaean tectonics. Geosciences, 8, 367.CrossRefGoogle Scholar
van Hinsberg, V., Yakymchuk, C., Jepsen, A.T.K., Kirkland, C.L. and Szilas, K. (2021) The corundum conundrum: Constraining the compositions of fluids involved in ruby formation in metamorphic melanges of ultramafic and aluminous rocks. Chemical Geology, 571, 120180.CrossRefGoogle Scholar
Villiger, S., Ulmer, P. and Müntener, O. (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa; the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. Journal of Petrology, 48, 159184.CrossRefGoogle Scholar
Wall, C.J., Scoates, J.S., Weis, D., Friedman, R.M., Amini, M. and Meurer, W.P. (2018) The Stillwater Complex: integrating zircon geochronological and geochemical constraints on the age, emplacement history and crystallization of a large, open-system layered intrusion. Journal of Petrology, 59, 153190.CrossRefGoogle Scholar
Walter, M.J. (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39, 2960.CrossRefGoogle Scholar
Waterton, P., Hyde, W.R., Tusch, J., Hollis, J.A., Kirkland, C.L., Kinney, C. and Szilas, K. (2020) Geodynamic implications of synchronous norite and TTG formation in the 3 Ga Maniitsoq Norite Belt, West Greenland. Frontiers in Earth Science, 8, 406.CrossRefGoogle Scholar
Whattam, S.A. and Stern, R.J. (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology, 162, 10311045.CrossRefGoogle Scholar
Whyatt, L., Peters, S., Pack, A., Kirkland, C.L., Balic-Zunic, T. and Szilas, K. (2020) Metasomatic Reactions between Archean Dunite and Trondhjemite at the Seqi Olivine Mine in Greenland. Minerals, 10, 85.CrossRefGoogle Scholar
Wittig, N., Pearson, D.G., Webb, M., Ottley, C.J., Irvine, G.J., Kopylova, M., Jensen, S.M. and Nowell, G.M. (2008) Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth and Planetary Science Letters, 274, 2433.CrossRefGoogle Scholar
Yakymchuk, C. and Szilas, K. (2018) Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts. Geoscience Frontiers, 9, 727749.CrossRefGoogle Scholar
Yakymchuk, C., Kirkland, C.L., Hollis, J.A., Kendrick, J., Gardiner, N.J. and Szilas, K. (2020) Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland. Precambrian Research, 339, 105615.CrossRefGoogle Scholar
Supplementary material: File

Aarestrup et al. supplementary material

Aarestrup et al. supplementary material

Download Aarestrup et al. supplementary material(File)
File 5 MB
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Mesoarchean Amikoq Layered Complex of SW Greenland: Part 2. Geochemical evidence for high-Mg noritic plutonism through crustal assimilation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Mesoarchean Amikoq Layered Complex of SW Greenland: Part 2. Geochemical evidence for high-Mg noritic plutonism through crustal assimilation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Mesoarchean Amikoq Layered Complex of SW Greenland: Part 2. Geochemical evidence for high-Mg noritic plutonism through crustal assimilation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *