Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-10T17:32:33.409Z Has data issue: false hasContentIssue false

Carbon Nanoscrolls at High Impacts: A Molecular Dynamics Investigation

Published online by Cambridge University Press:  17 March 2016

José Moreira de Sousa
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Leonardo Dantas Machado
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970, Brazil
Cristiano Francisco Woellner*
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Pedro Alves da Silva Autreto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Universidade Federal do ABC, Santo André-SP, 09210-580, Brazil
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Get access

Abstract

The behavior of nanostructures under high strain-rate conditions has been object of interest in recent years. For instance, recent experimental investigations showed that at high velocity impacts carbon nanotubes can unzip resulting into graphene nanoribbons. Carbon nanoscrolls (CNS) are among the structures whose high impact behavior has not yet been investigated. CNS are graphene membranes rolled up into papyrus-like structures. Their unique open-ended topology leads to properties not found in close-ended structures, such as nanotubes. Here we report a fully atomistic reactive molecular dynamics study on the behavior of CNS colliding at high velocities against solid targets. Our results show that the velocity and scroll axis orientation are key parameters to determine the resulting formed nanostructures after impact. The relative orientation of the scroll open ends and the substrate is also very important. We observed that for appropriate velocities and orientations, the nanoscrolls can experience large structural deformations and large-scale fractures. We have also observed unscrolling (scrolls going back to planar or quasi-planar graphene membranes), unzip resulting into nanoribbons, and significant reconstructions from breaking and/or formation of new chemical bonds. Another interesting result was that if the CNS impact the substrate with their open ends, for certain velocities, fused scroll walls were observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, and Firsov, A. A., Science, 2004, 306, 666.CrossRefGoogle Scholar
Vinod, S., Tiwary, C. S., Autreto, P. A. S., Taha-Tijerina, J., Ozden, S., Chipara, A. C., Vajtai, R., Galvao, D. S., Narayanan, T. N., and Ajayan, P. M., Nature Commun., 2014, 5, 4541.CrossRefGoogle Scholar
Lee, J.-H., Loya, P. E., Lou, J., and Thomas, E. L., Science, 2014, 346, 1092.CrossRefGoogle ScholarPubMed
Ozden, S., Autreto, P. A. S., Tiwary, C. S., Khatiwada, S., Machado, L. D., Galvao, D. S., Vajtai, R., Barrera, E. V., and Ajayan, P. M.. Nano Letters, 2014, 14, 4131.CrossRefGoogle Scholar
Viculis, L. M., Mack, J. J., and Kaner, R. B., Science, 2003, 299, 1361.CrossRefGoogle Scholar
Tomanek, D., Physica B, 2002, 323, 86.CrossRefGoogle Scholar
Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvao, D. S., and Baughman, R. H., Nano Lett., 2004, 4, 881.CrossRefGoogle Scholar
Martins, B. V. C. and Galvao, D. S., Nanotechnology, 2010, 21, 075710.CrossRefGoogle Scholar
Perim, E., Machado, L. D. and Galvao, D. S., Frontiers in Materials, 2014, 1, 31.CrossRefGoogle Scholar
Jayasena, B., Subbiah, S., and Reddy, C. D., J. Micro and Nano-Manufact., 2014, 2, 011003.CrossRefGoogle Scholar
Rurali, R., Coluci, V. R., and Galvao, D. S., Phys. Rev. B, 2006, 74, 085414.Google Scholar
Coluci, V. R., Braga, S. F., Baughman, R. H., and Galvao, D. S., Phys. Rev. B, 2007, 75, 125404.CrossRefGoogle Scholar
Perim, E. and Galvao, D. S., Nanotechnology 2009, 20, 335702.CrossRefGoogle Scholar
Van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A., J. Phys. Chem. A, 2001, 105, 9396.CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys., 1995, 117, 1.CrossRefGoogle Scholar
16. http://www.Lammps.sandia.gov. Sandia National Laboratories, LAMMPS Users Manual, 2014, vol. 209.Google Scholar