Skip to main content
×
×
Home

Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

  • Henry C. de Groh (a1)
Abstract

Carbon nanotube (CNT) composites are being explored to improve the conductivity and density of electrical wire used in aviation. Presented are the current carrying capacity of a CNT-Cu composite and Roman spectroscopy and electrical conductivity of Buckypaper (BP) made of normal and sorted 95% metallic CNT (m-CNT). The ampacity of the Cu-CNT composite was 3.8% lower than pure Cu. This is significant because it is not in agreement with high CNT ampacity claims. The average conductivity of the CNT in the sorted, 95% metallic BP was 2.5 times higher than the CNT in the un-sorted BP. This shows the importance of the intrinsic CNT conductivity as opposed to interfacial resistances and that the conductivity of the semiconductor CNT present in the un-sorted BP must be much lower than the conductivity of m-CNT. The high conductivity of the sorted BP provides proof that conductivity improvements in CNT composites can be made by the use of sorted, highly conductive m-CNT.

Copyright
Corresponding author
*(Email: henry.c.degroh@nasa.gov)
References
Hide All
1. Rolt, A., and Whurr, J. in Optimizing Propulsive Efficiency in Aircraft with Boundary Layer Ingesting Distributed Propulsion, (22nd Int. Symp. on Air Breathing Engines, Phoenix, AZ, 2015), ISABE-2015-20201, pp. 110.
2. Welstead, J. R., and Felder, J. L. in Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion, (AIAA SciTech Conf., 54th AIAA Aerospace Sciences Meeting, San Diego, CA, 2016), AIAA-2016-1027, pp. 117.
3. Bradley, M. K., and Droney, C. K., “Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development,” NASA/CR—2012–217556 (2012).
4. Bandaru, P. R., J. Nanosci. Nanotechnol. 7, 3, 129 (2007).
5. Liu, J., and Hersam, M. C., MRS Bull. 35, 315321 (2010).
6. de Groh, H. C. III, “Consideration of Conductive Motor Winding Materials at Room and Elevated Temperatures,” NASA/TM—2015-218882 (2015).
7. SouthWest NanoTechnologies, Technical Data Sheet, FW100X, Few-Wall Carbon Nanotubes, 4.15.2015 Rev 5(2015). (last retrieved Jan. 19, 2016): http://www.swentnano.com/uploads/3/0/7/0/30708225/fw100x_tds_rev5.pdf
8. NanoIntegris Technical Data Sheet, IsoNanotubes-M, -S, and PureTubes, (NanoIntegris, Skokie, IL, 2015). http://raymor.com/wp-content/uploads/2015/01/Carbon-Nanotubes-Technical-Data-Sheet.pdf (last retrieved Jan. 19, 2016).
9. Kim, K. K., Park, J. S., Kim, S. J., Geng, H. Z., An, K. H., Yang, C-M., Sato, K., Saito, R., and Lee, Y. H., Phys. Rev. B 76, 205426 (2007).
10. de Groh, H. C. III,“Ramon Spectroscopy and Electrical Conductivity of metallic carbon nanotube Buckypaper and Ampacity of a CNT-Cu Composite,” in press NASA/TM 2016.
11. Subramaniam, C., Yamada, T., Kobashi, K., Sekiguchi, A., Futaba, D. N., Yamura, M., and Heta, K., Nat. Commun. 4, 2202 (2013).
12. Dyke, C., Jacob, L. M., Madden, D., and Barrera, V. in Ultrahigh Conductivity Umbilicals: Polymer Nanotube Umbilicals (Offshore Technology Conference, Houston, TX, 2013), OTC-24255, pp. 15.
13. Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., and Kalenczuk, R. J., Mater. Sci.-Poland 26, 2, 433440 (2008).
14. Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A., and Saito, R., Phys. Chem. Chem. Phys. 9, 12761291 (2007).
15. Xue, Y., “Experimental Study of Electrical Conductivity of Carbon Nanotube, Nanofiber Buckypapers and Their Composites,” M.S. Thesis, Florida State Univ., Tallahassee, FL (2007).
16. Liu, J-H., Miao, H-Y., Lakshmanan, S., Wang, L-C., and Tsai, R-H., J. Nanomater. 2013 (2013). http://www.hindawi.com/journals/jnm/2013/635647/ (last retrieved Feb. 3, 2016).
17. Yeh, C-S., “A Study of Nanostructure and Properties of Mixed Nanotube Buckypaper Materials: Fabrication, Process Modeling Characterization, and Property Modeling,” Ph.D. Thesis, Florida State University, Tallahassee, FL (2007), p. 147.
18. Aldalbahi, A., Carbon, 50, 3, 11971208 (2012).
19. Yang, K., He, J., Puneet, P., Su, Z., Skovel, M. J., Gaillard, J., Tritt, T. M., and Rao, A. M., J. Phys. Condens. Matter 22, 16(2010). http://iopscience.iop.org/article/10.1088/0953-8984/22/33/334215/meta;jsessionid=5825D471AA4D0BAE435C931F8FBABC21.c2.iopscience.cld.iop.org (last retrieved Feb 2, 2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 402 *
Loading metrics...

* Views captured on Cambridge Core between 27th December 2016 - 19th July 2018. This data will be updated every 24 hours.