Skip to main content Accessibility help

Thermal Stability of Materials for Thin-Film Electrochemical Cells Investigated by Thin-Film Calorimetry

  • Hendrik Wulfmeier (a1), Alexander Omelcenko (a1), Daniel Albrecht (a1), Detlef Klimm (a2), Wassima El Mofid (a3), Marc Strafela (a4), Sven Ulrich (a4), Andreas Bund (a3) and Holger Fritze (a1)...


Phase transformation enthalpies are determined using the recently developed measurement technique Thin-Film Calorimetry (TFC), which is based on piezoelectric resonators vibrating in thickness shear mode. They are applicable up to at least 1000 °C. To the best of our knowledge, no comparable TFC systems for such high temperatures exist.

The experimental part is divided into two subsections. The first is addressed to a thermodynamic investigation on piezoelectric langasite crystals (LGS, La3Ga5SiO14) which are the key component of the TFC system. The specific heat capacity is measured on LGS crystals of three different manufacturers. It ranges from about 0.45 J g-1 K-1 at 40 °C to about 0.60 J g-1 K-1 at 1000 °C. Thereby, deviations of up to 5 % between the different crystals are detected. Thermal diffusivity data for Y-cut LGS crystals are determined as well. Here, a constant decrease with temperature is detected ranging from 0.48 mm2 s-1 at room temperature to 0.38 mm2 s-1 at 700 °C.

The second part presents thin-film calorimetric investigation on thin films of the family Li-Ni-Mn-Co-Al-Oxide (NMC/NMCA). These cathode materials are investigated and compared when annealed in ambient air or 0.5 % H2/Ar up to 860 °C. Three stoichiometries are chosen: Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, and Li(Ni0.6Mn0.2Co0.15Al0.05)O2. The samples show three or four phase transformations. In air, the samples crystallize in the range of 250-350 °C. In 0.5 % H2/Ar, the transformations occur at higher temperatures. Especially in air, stoichiometric NMC crystallizes at lower temperatures compared to Ni-rich compositions. Additional doping with Al enhances the thermal stability which shifts all phase transformations to higher temperatures in both atmospheres.


Corresponding author


Hide All
1.Xiao, K., Gregoire, J.M., McCluskey, P.J., and Vlassak, J.J., Rev. Sci. Instrum. 83, 114901, (2012).
2.Lopeandía, A.F., León-Gutierrez, E., Rodríguez-Viejo, J., Muñoz, F.J., Microelectron. Eng. 84, 12881291, (2007).
3.Lee, D., Sim, G., Zhao, K., and Vlassak, J.J., Nano Lett. 15, 82668270, (2015).
4.Wulfmeier, H., Albrecht, D., Fischer, J., Ivanov, S., Bund, A., Ulrich, S., and Fritze, H., J. Electrochem. Soc. 162 (4), A727A736, (2015).
5.Wulfmeier, H., Albrecht, D., Ivanov, S., Fischer, J., Ulrich, S., Bund, A., and Fritze, H., J. Mat. Sci. 48, 65856596, (2013).
6.Wulfmeier, H., Albrecht, D., Ivanov, S., Bund, A., and Fritze, H., Proceedings 11. Dresdner Sensor-Symposium, 3439 (2013).
7.Robert, R., Villevieille, C., and Novak, P., J. Mater. Chem. A 2, 85898598, (2014).
8.Noh, H.-J., Youn, S., Yoon, C., and Sun, Y.-K., J. Power Sources 233, 121130, (2013).
9.Croguennec, L., Bains, J., Bréger, J., Tessier, C., Biensan, P., Levasseur, S., and Delmas, C., J. Electrochem. Soc. 158 (6), A664A670, (2011).
10.German Industrial Norm DIN 51007.
11.El Mofid, W., Ivanov, S., Konkin, A., and Bund, A., J. Power Sources 268, 414422, (2014).
12.European Standard EN 10027–2.
13.Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P., Thermochim. Acta 497, 713, (2013).
14.FactSage, Thermfact and GTT Technologies.
15.Kugaenko, O.M., Uvarova, S.S., Krylov, S.A., Senatulin, B.R., Petrakov, V.S., Busanov, O.A., Egorov, V.N., and Sakharov, S.A., Bulletin of the RAS. Physics 76, 12581263 (2012).
16.Kong, H., Wang, J., Zhang, H., Yin, X., Zhang, S, Liu, Y., Cheng, X., Gao, L., Hu, X., and Jiang, M., J. Cryst. Growth 254, 360367, (2003).
17.Wang, Z., Yuan, D., Pan, L., Cheng, X., Lv, Y., Wang, X., Guo, S., Duan, X., Wang, J., Xu, D., and Lv, M., Appl. Phys. A 77, 683685, (2003).
18.Suhak, Y., Schulz, M., Wulfmeier, H., Johnson, W., Sotnikov, A., Schmidt, H., Ganschow, S., Klimm, D., and Fritze, H., MRS Advances 2015 (submitted).
19.Zhang, X., Mauger, A., Lu, Q., Groult, H., Perrigaud, L., Gendron, F., and Julien, C.M., Electrochimica Acta 55, 64406449, (2010).
20.Wang, H., Jang, Y.-I., Huang, B., Sadoway, D.R., and Chiang, Y.-M., J. Electrochem. Soc. 146 (2), 473480, (1999).
21.Shannon, R.D., Acta Cryst. A32, 751767, (1976).
22.Fu, C., Li, G., Luo, D., Li, Q., Fan, J., and Li, L., ACS Appl. Mater. Interfaces 6, 1582215831, (2014).
23.Lee, K.-S., Myung, S.-T., Amine, K., Yashiro, H., and Sun, Y.-K., J. Electrochem. Soc. 154 (10), A971A977, (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed