Skip to main content
×
Home

3D printing of biomaterials

  • Amit Bandyopadhyay (a1), Susmita Bose (a2) and Suman Das (a3)
Abstract
Abstract

Three-dimensional (3D) printing represents the direct fabrication of parts layer-by-layer, guided by digital information from a computer-aided design file without any part-specific tooling. Over the past three decades, a variety of 3D printing technologies have evolved that have transformed the idea of direct printing of parts for numerous applications. Three-dimensional printing technology offers significant advantages for biomedical devices and tissue engineering due to its ability to manufacture low-volume or one-of-a-kind parts on-demand based on patient-specific needs, at no additional cost for different designs that can vary from patient to patient, while also offering flexibility in the starting materials. However, many concerns remain for widespread applications of 3D-printed biomaterials, including regulatory issues, a sterile environment for part fabrication, and the achievement of target material properties with the desired architecture. This article offers a broad overview of the field of 3D-printed biomaterials along with a few specific applications to assist the reader in obtaining an understanding of the current state of the art and to encourage future scientific and technical contributions toward expanding the frontiers of 3D-printed biomaterials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      3D printing of biomaterials
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      3D printing of biomaterials
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      3D printing of biomaterials
      Available formats
      ×
Copyright
References
Hide All
1.Hull C.W., “Apparatus for Production of Three-Dimensional Objects by Stereolithography,” US Patent 4,575,330 (March 11, 1986).
2.3D Systems Inc., http://www.3dsystems.com/.
4.Manufacturing Demonstration Facility, Oak Ridge National Laboratory, http://web.ornl.gov/sci/manufacturing/media/news/3d-car/.
5.Deckard C.R., “Method and Apparatus for Producing Parts by Selective Sintering,” US Patent 4,863,538 (September 5, 1989).
6.Sachs E.M., Haggerty J.S., Cima M.J., Williams P.A., “Three-Dimensional Printing Techniques,” US Patent 5,204,055 (1993).
7.Crump S.S., “Apparatus and Method for Creating Three-Dimensional Objects,” US Patent 5,121,329 (June 9, 1992).
8.Stratasys Ltd., http://www.stratasys.com.
9.Sanders R.C. Jr., Forsyth J.L., Philbrook K.F., “3-D Model Making,” US Patent 5,740,051 (April 14, 1998).
10.Sobral J.M., Caridade S.G., Sousa R.A., Mano J.F., Reis R.L., Acta Biomater. 7, 1009 (2011).
11.Wu C., Luo Y., Cuniberti G., Xiao Y., Gelinsky M., Acta Biomater. 7, 2644 (2011).
12.Seyednejad H., Gawlitta D., Kuiper R.V., de Bruin A., van Nostrum C.F., Vermonden T., Dhert W.J., Hennink W.E., Biomaterials 33, 4309 (2012).
13.Fu Q., Saiz E., Tomsia A.P., Acta Biomater. 7, 3547 (2011).
14.Doraiswamy A., Narayan R.J., Harris M.L., Qadri S.B., Modi R., Chrisey D.B., J. Biomed. Mater. Res. A. 80A (3), 635 (2007).
15.Guillotin B., Souquet A., Catros S., Duocastella M., Pippenger B., Bellance S., Bareille R., Rémy M., Bordenave L., Amédée J., Guillemot F., Biomaterials 31, 7250 (2010).
16.Williams J.M., Adewumni A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., Hollister S.J., Das S., Biomaterials 26 (23), 4817 (2005).
17.Duan B., Wang M., Zhou W.Y., Cheung W.L., Li Z.Y., Lu W.W., Acta Biomater. 6, 4495 (2010).
18.Lan P.X., Lee J.W., Seol Y.J., Cho D.W., J. Mater. Sci. Mater. Med. 20, 271 (2009).
19.Ronca A., Ambrosio L., Grijpma D.W., Acta Biomater. 9, 5989 (2013).
20.Kalita S.J., Bose S., Hosick H.L., Bandyopadhyay A., Mater. Sci. Eng. C 23, (5) 611 (2003).
21.Bose S., Darsell J., Yang L., Sarkar D.K., Hosick H.L., Bandyopadhyay A., J. Mater. Sci. Mater. Med. 13, 23 (2002).
22.Darsell J., Bose S., Hosick H., Bandyopadhyay A.J. Am. Ceram. Soc. 86 (7), 1076 (2003).
23.Russias J., Saiz E., Deville S., Gryn K., Liu G., Nalla R.K., Tomsia A.P.. J. Biomed. Mater. Res. Part A. 83A, 434 (2007).
24.ASTM International, “Standard Test Methods for Conductivity Type of Extrinsic Semiconducting Materials (Withdrawn 2003),” available online athttp://www.astm.org/Standards/F42.htm.
25.Balazic M., Kopac J., Jackson M.J., Ahmed W., Int. J. Nano Biomater. 1 (1), 3 (2007).
26.Woodruffa M.A., Langeb C., Reichertc J., Bernerd A., Chene F., Fratzlb P., Schantzf J.-T., Hutmachera D.W., Mater. Today 15, 430 (2012).
27.Reichert J.C., Cipitria A., Epari D.R., Saifzadeh S., Krishnakanth P., Berner A., Woodruff W.A., Schell H., Mehta M., Schuetz M.A., Duda G.N., Hutmacher D.W., Sci. Transl. Med. 4, 141ra93 (2012).
28.Melchels F.P.W., Domingos M.A.N., Klein T.J., Malda J., Bartolo P.J., Hutmacher D.W., Prog. Polym. Sci. 37, 1079 (2012).
29.Hutmacher D.W., J. Mater. Sci. Mater. Med. 24 (11), 2659 (2013).
30.Eshraghi S., Das S., Acta Biomater. 8 (8), 3138 (2012).
31.Eshraghi S., Das S., Acta Biomater. 6 (7), 2467 (2010).
32.Bradley R., Ringeisen R.K., Pirlo P.K., Wu T.B., Yong H., Wei S., Qudus H., Chrisey D.B., MRS Bull. 38 (10), 834 (2013).
33.Fielding G., Bose S., Acta Biomater. 9 (11), 9137 (2013).
34.Tarafder S., Dernell W.S., Bandyopadhyay A., Bose S., J. Biomed. Mater. Res. Part B (2014), doi: 10.1002/jbm.b.33239.
35.Tarafder S., Davies N.M., Bandyopadhyay A., Bose S., Biomater. Sci. 1, 1250 (2013).
36.Bose S., Roy M., Bandyopadhyay A., Trends Biotechnol. 30 (10), 546 (2012).
37.Bose S., Fielding G., Tarafder S., Bandyopadhyay A., Trends Biotechnol. 31 (10), 594 (2013).
38.Bose S., Tarafder S., Acta Biomater. 8 (4), 1401 (2012).
39.Tarafder S., Bose S., ACS Appl. Mater. Interfaces 6 (13), 9955 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 174
Total number of PDF views: 1338 *
Loading metrics...

Abstract views

Total abstract views: 1534 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.