Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-13T19:41:19.206Z Has data issue: false hasContentIssue false

Chemical epitaxy of semiconductor thin films

Published online by Cambridge University Press:  31 January 2011

Anna Osherov
Affiliation:
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, osherov@bgu.ac.il
Yuval Golan
Affiliation:
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, ygolan@bgu.ac.il
Get access

Abstract

Epitaxial thin films of semiconductor materials are mostly formed on single crystal substrates using physical and chemical vapor phase deposition techniques. This article focuses on a much less common technique for synthesis of epitaxial thin films, chemical bath deposition (CBD) from solution, which offers a simple, inexpensive, and scalable alternative. One of the major advantages of CBD is in sequential processing, where low deposition temperatures help minimize interdiffusion. We outline the CBD pathway to epitaxial semiconductor films and provide examples for well-defined orientation relationships between film and substrate pairs in a variety of epitaxial systems. The influence of the chemical nature, structure, and orientation of the substrate on the incipient films is outlined, as well as the effect of parameters such as solution composition, bath temperature, and pH for controlling the film morphology and its consequent physical properties.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Freund, L.B., Suresh, S., Thin Film Materials—Stress, Defect Formation and Surface Evolution (Cambridge University Press, UK, 2003), p. 31.Google Scholar
2. Smith, D.L., Thin Film Deposition—Principles and Practice (McGraw-Hill, NY, 1995), p. 221.Google Scholar
3. Venables, J.A., Introduction to Surface and Thin Film Processes (Cambridge University Press, UK, 2000), p. 144.CrossRefGoogle Scholar
4. Hodes, G., Chemical Solution Deposition of Semiconductor Films (Marcel Dekker, Inc., New York-Basel, 2002).CrossRefGoogle Scholar
5. Gorer, S., Hodes, G., J. Phys. Chem. 98, 5338 (1994).CrossRefGoogle Scholar
6. Shandalov, M., Golan, Y, Chem. Mater. 18, 3593 (2006).CrossRefGoogle Scholar
7. Pashley, D.W., A Historical Review of Epitaxy in: Epitaxial Growth—Part A J. W. Matthews, Ed. (Academic Press, NY, 1975), p. 2.Google Scholar
8. Lincot, D., Ortega-Borges, R., Appl. Phys. lett. 64 (5), 569 (1994).CrossRefGoogle Scholar
9. Lincot, D., Kampmann, A., Mokili, B., Vedel, J., Cortés, R., Froment, M., Appl. Phys. Lett. 67 (16), 2355 (1995).CrossRefGoogle Scholar
10. Froment, M., Bernard, M.C., Cortés, R., Makili, B., Lincot, D., J. Electrochem. Soc. 142 (8), 2642 (1995).CrossRefGoogle Scholar
11. Lincot, D., Furlong, M.J., Froment, M., Cortés, R., Bernard, M.C., Mat. Res. Soc. Symp. Proc. 451, 223 (1997).CrossRefGoogle Scholar
12. Furlong, M.J., Froment, M., Bernard, M.C., Cortés, R., Tiwari, A.N., Krejci, M., Zogg, H., Lincot, D., J. Crystal Growth 193, 114 (1998).CrossRefGoogle Scholar
13. Lincot, D., Mokili, B., Cortés, R., Froment, M., Microsc. Microanal. Microstruct 7, 217 (1996).CrossRefGoogle Scholar
14. Cachet, H., Cortés, R., Froment, M., Maurin, G., Shramchenko, N., J. Electrochem. Soc. 144 (10), 3583 (1997).CrossRefGoogle Scholar
15. Sharma, N.C., Pandya, D.K., Sehgal, H.K., Chopra, K.L., Thin Solid Films 59, 157 (1979).CrossRefGoogle Scholar
16. Sahoo, T., Ju, J.W., Kannan, V., Kim, J.S., Yu, Y.T., Han, M.S., Park, Y.S., Lee, I.H. Mater. Res. Bull. 43, 502 (2008).CrossRefGoogle Scholar
17. Sahoo, T., Jeon, J.W., Kannan, V., Lee, C.R., Yu, Y.T., Song, Y.W., Lee, I.H., Thin Solid Films 516, 8244 (2008).CrossRefGoogle Scholar
18. Sahoo, T., Kang, E.S., Kim, M., Kannan, V., Yu, Y.T., Shin, D.C., Kim, T.G., Lee, I.H. J. Crystal Growth 310, 570 (2008).CrossRefGoogle Scholar
19. Andeen, D., Kim, J.H., Lange, F.F., Goh, G.K.L., Tripathy, S., Adv. Funct. Mater 16, 799 (2006).CrossRefGoogle Scholar
20. Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
21. Andeen, D., Loeffler, L., Padture, N., Lange, F.F., J. Crystal Growth 259, 103 (2003).CrossRefGoogle Scholar
22. Sim, A.Y.L., Goh, G.K.L., Tripathy, S., Andeen, D., Lange, F.F., Electrochim. Acta 52, 2933 (2007).CrossRefGoogle Scholar
23. Wessler, B., Steinecker, A., Mader, W., J. Cryst. Growth 242, 283 (2002).CrossRefGoogle Scholar
24. Isshiki, M., Endo, T., Masumoto, K., Usui, Y., J. Electrochem. Soc. 137 (9) 2697 (1990).CrossRefGoogle Scholar
25. Davis, J.L., Norr, M.K., J. Appl. Phys. 37 (4), 1670 (1966).CrossRefGoogle Scholar
26. Watanabe, S., Mita, Y., J. Electrochem. Soc. 116 (7), 989 (1969).CrossRefGoogle Scholar
27. Osherov, A., Ezersky, V., Golan, Y., J. Cryst. Growth 308, 334 (2007).CrossRefGoogle Scholar
28. Osherov, A., Shandalov, M., Ezersky, V., Golan, Y., J. Cryst. Growth 304 (1) 169 (2007).CrossRefGoogle Scholar
29. Osherov, A., Ezersky, V., Golan, Y., (unpublished results).Google Scholar
30. Cortés, R., Froment, M., Mokili, B., Lincot, D., Philos. Mag. Letts. 73, 209 (1994).CrossRefGoogle Scholar
31. Guizzetti, G., Filippini, F., Reguzzoni, E., Samoggia, G., Phys. Status Solidi A 6, 605 (1971).CrossRefGoogle Scholar
32. Osherov, A., Golan, Y., Phys. Status Solidi C 5, 3431 (2008).CrossRefGoogle Scholar
33. Golan, Y., Margulis, L., Rubinstein, I., Hodes, G., Langmuir 8, 749 (1992)CrossRefGoogle Scholar
34. Shandalov, M., Golan, Y., Eur. Phys. J. Appl. Phys. 31, 27 (2005).CrossRefGoogle Scholar
35. Pashley, D.W., Adv. Phys. 5 (18), 175 (1956).CrossRefGoogle Scholar
36. Pashley, D.W., Adv. Phys. 14, 327 (1965).CrossRefGoogle Scholar
37. Medlin, R., Fiala, J., J. Cryst. Growth 275, e1643 (2005).CrossRefGoogle Scholar
38. Shandalov, M., Golan, Y., Eur. Phys. J. Appl. Phys. 24, 13 (2003).CrossRefGoogle Scholar
39. Shandalov, M., Golan, Y., Eur. Phys. J. Appl. Phys. 28, 51 (2004).CrossRefGoogle Scholar