Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T04:25:35.460Z Has data issue: false hasContentIssue false

In Situ Mechanical Testing of Biological and Inorganic Materials at the Micro- and Nanoscales

Published online by Cambridge University Press:  31 January 2011

Get access


A central goal of materials science is to reveal how a material deforms under mechanical stress and how the deformation is related to its microstructure. This goal is best achieved by “seeing” the evolving microstructure when the property is measured quantitatively. Mechanical testing methods have thus evolved over time to test materials at the micro- and nanoscale while observing the changes in the specimen. Recent advances in microtechnology offer a new generation of microscale sensors and actuators that allow in situ studies of both living and nonliving materials in analytical instruments. Such experiments are providing new and fundamental insights on the structure-property relations in materials and revealing remarkable links between the mechanical properties of living cells and their functions. This issue presents five articles that discuss state-of-the-art methodologies for in situ mechanical tests and highlights new findings through the use of these techniques.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Gane, N., Bowden, F.P., J. Appl. Phys. 39, 1432 (1968).CrossRefGoogle Scholar
2.Gane, N., Proc. R. Soc. London, Ser. A 317 (1530), 367 (1970).Google Scholar
3.Orso, S., Wegst, U.G.K., Eberl, C., Arzt, E., Adv. Mater. 18 (7), 874 (2006).CrossRefGoogle Scholar
4.Richter, G., Hillerich, K., Gianola, D.S., Mönig, R., Kraft, O., Volkert, C.A., Nano Lett. 9 (8), 3048 (2009).CrossRefGoogle Scholar
5.Rösner, H., Parida, S., Kramer, D., Volkert, C.A., Weissmüller, J., Advanced Engineering Materials 9, 535 (2007).CrossRefGoogle Scholar
6.Hounsfield, G.N., Br. J. Rad. 46, 1016 (1973); DOI: 10.1259/0007–1285-46–552-1016.CrossRefGoogle Scholar
7.Eberl, C., Gianola, D.S., Hemker, K.J., Exp. Mech. (2009); DOI: 10.1007/s11340–008-9187–4.Google Scholar
8.Suresh, K.S., Acta, 51 (19), 5743 (2003).Google Scholar
9.Brenner, S.S., J. Appl. Phys. 27 (12), 1484 (1956).CrossRefGoogle Scholar
10.Brenner, S.S., J. Appl. Phys. 28 (9), 1023 (1957).CrossRefGoogle Scholar
11.Nix, W.D., Metall. Trans. A, 20A, 2217 (1989).CrossRefGoogle Scholar
12.Eberl, C., Spolenak, R., Arzt, E., Kubat, F., Leidl, A., Ruile, W., Kraft, O., Mater. Sci. Eng. A 421 (1–2), 68 (2006).CrossRefGoogle Scholar
13.Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., Science 287 (5453), 637 (2000).CrossRefGoogle Scholar
14.Chen, P., Muller, R.S., Jolly, R.D., Halac, G.L., White, R.M., Andrews, A.P., Lim, T.C., Motamedi, M.E., IEEE Trans. Electron Devices 29 (1), 27 (1982).CrossRefGoogle Scholar
15.Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D., Nat. Nanotechnol. 3, 626 (2008).CrossRefGoogle Scholar
16.Rajagopalan, J., Han, J., Saif, M.T.A., Science 315, 1831 (2007).CrossRefGoogle Scholar
17.Rajagopalan, J., Han, J.H., Saif, M.T.A., Scripta Mater. 59 (7), 734 (2008).CrossRefGoogle Scholar
18.Siechen, S., Yang, S., Chiba, A., Saif, T., Proc. Nat. Acad. Sci. 106 (31), 12611 (2009).CrossRefGoogle Scholar
19.Vogel, V., Sheetz, M., Nat. Rev. Mol. Cell Biol. 7, 265 (2006).CrossRefGoogle Scholar
20.Cross, S.E., Jin, Y.-S., Rao, J., Gimzewski, J.K., Nat. Nanotechnol. 2, 780 (2007).CrossRefGoogle Scholar
21.Cahn, J.W., Mishin, Y., Suzuki, A., Acta Mater. 54 (19), 4953 (2006).CrossRefGoogle Scholar
22.Colomban, P., Adv. Eng. Mater. 4 (8), 535 (2002); DOI: 10.1002/1527–2648(20020806)4:8<535::AID-ADEM535>3.0.CO;2-E3.0.CO;2-E>CrossRef3.0.CO;2-E>Google Scholar