Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-28jzs Total loading time: 0.32 Render date: 2021-03-05T13:40:56.872Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise

Published online by Cambridge University Press:  13 November 2014

Eva Hemmer
Affiliation:
Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, Canada; eva.hemmer@emt.inrs.ca
Fiorenzo Vetrone
Affiliation:
Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, Canada; vetrone@emt.inrs.ca
Kohei Soga
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, Japan; mail@ksoga.com
Corresponding
Get access

Abstract

Fast and significant progress has been achieved in the development of new biomarkers in recent years providing promising approaches for the reliable detection of diseases at an early stage. Yet, the disadvantages of commonly used markers, including photobleaching, autofluorescence, phototoxicity, and scattering, when ultraviolet or visible light is used for excitation, need to be overcome. Lanthanide-doped host materials are well known for their excellent optical properties, such as their ability to (up)convert near-infrared excitation to higher energies spanning the ultraviolet, visible, and near-infrared regions or to undergo strong near-infrared luminescence following near-infrared excitation. Their application as biomarkers may overcome the aforementioned drawbacks of conventional dyes. Thus, lanthanide-based nanostructures are highly promising candidates for cellular and small animal imaging, while the assessment of their cytotoxicity remains a crucial issue. Recent developments in the field of upconversion and near-infrared bioimaging focusing on some of the latest results obtained in in vitro and in vivo studies assessing the toxicity of lanthanide-based nanophosphors are highlighted in this review.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anderson, R.R., Parrish, J.A., J. Invest. Dermatol. 77, 13 (1981).CrossRef
Smith, A.M., Mancini, M.C., Nie, S., Nat. Nanotechnol. 4, 710 (2009).CrossRef
Hemmer, E., Venkatachalam, N., Hyodo, H., Hattori, A., Ebina, Y., Kishimoto, H., Soga, K., Nanoscale 5, 11339 (2013).CrossRef
Troyan, S.L., Kianzad, V., Gibbs-Strauss, S.L., Gioux, S., Matsui, A., Oketokoun, R., Ngo, L., Khamene, A., Azar, F., Frangioni, J.V., Ann. Surg. Oncol. 16, 2943 (2009).CrossRef
Yao, C., Tong, Y., Trends Analyt. Chem. 39, 60 (2012).CrossRef
Blasse, G., Grabmaier, B.C., Luminescent Materials (Springer Verlag, Berlin, 1994).CrossRefGoogle Scholar
Soga, K., in Application of Ceramic Nanophosphors for Biomedical Photonics, Tan, M.C., Ed. (Transworld Research Network, Kerala, India, 2009), p. 223.Google Scholar
Vetrone, F., Capobianco, J.A., Int. J. Nanotechnol. 5, 1306 (2008).CrossRef
Hemmer, E., Takeshita, H., Yamano, T., Fujiki, T., Kohl, Y., Löw, K., Venkatachalam, N., Hyodo, H., Kishimoto, H., Soga, K., J. Mater. Sci. Mater. Med. 23, 2399 (2012).CrossRef
Mao, Y., Tran, T., Guo, X., Huang, J.Y., Shih, C.K., Wang, K.L., Chang, J.P., Adv. Funct. Mater. 19, 748 (2009).CrossRef
Konishi, T., Shimizu, M., Kameyama, Y., Soga, K., J. Mater. Sci. Mater. Electron. 18 (S1), 183 (2007).CrossRef
Sotiriou, G.A., Schneider, M., Pratsinis, S.E., J. Phys. Chem. C 115, 1084 (2011).CrossRef
Kamimura, M., Kanayama, N., Tokuzen, K., Soga, K., Nagasaki, Y., Nanoscale 3, 3705 (2011).CrossRef
Venkatachalam, N., Hemmer, E., Yamano, T., Hyodo, H., Kishimoto, H., Soga, K., Prog. Cryst. Growth Charact. Mater. 58, 121 (2012).CrossRef
Atabaev, T.Sh., Jin, O.S., Lee, J.H., Han, D.-W., Vu, H.H.T., Hwang, Y.-H., Kim, H.-K., RSC Adv. 2, 9495 (2012).CrossRef
Sotiriou, G.A., Franco, D., Poulikakos, D., Ferrari, A., ACS Nano 6, 3888 (2012).CrossRef
Soga, K., Tokuzen, K., Tsuji, K., Yamano, T., Hyodo, H., Kishimoto, H., Eur. J. Inorg. Chem. 18, 2673 (2010).CrossRef
Venkatachalam, N., Yamano, T., Hemmer, E., Hyodo, H., Kishimoto, H., Soga, K., J. Am. Ceram. Soc. 96, 2759 (2013).CrossRef
Lim, S.F., Riehn, R., Tung, C., Ryu, W.S., Zhuo, R., Dalland, J., Austin, R.H., Nanotechnology 20, 405701 (2009).CrossRef
Setua, S., Menon, D., Asok, A., Nair, S., Koyakutty, M., Biomaterials 31, 714 (2010).CrossRef
Luo, N., Tian, X., Yang, C., Xiao, J., Hu, W., Chen, D., Li, L., Phys. Chem. Chem. Phys. 15, 12235 (2013).CrossRef
Azizian, G., Riyahi-Alam, N., Haghgoo, S., Saffari, M., Zohdiaghdam, R., Gorj, E., Mater. Sci. Poland 31, 158 (2013).CrossRef
Zhou, L., Gu, Z., Liu, X., Yin, W., Tian, G., Yan, L., Jin, S., Ren, W., Xing, G., Li, W., Chang, X., Hu, Z., Zhao, Y., J. Mater. Chem. 22, 966 (2012).CrossRef
Ahrén, M., Selegard, L., Klasson, A., Söderlind, F., Abrikossova, N., Skoglund, C., Bengtsson, T., Engström, M., Käll, P.-O., Uvdal, K., Langmuir 26, 5753 (2010).CrossRef
Liu, Z., Liu, X., Yuan, Q., Dong, K., Jiang, L., Li, Z., Ren, J., Qu, X., J. Mater. Chem. 22, 14982 (2012).CrossRef
Hemmer, E., Venkatachalam, N., Hyodo, H., Soga, K., Adv. Mater. Sci. Eng. 2012, 748098 (2012).CrossRef
Hemmer, E., Yamano, T., Kishimoto, H., Venkatachalam, N., Hyodo, H., Soga, K., Acta Biomater. 9, 4734 (2013).CrossRef
Kattel, K., Park, J.Y., Xu, W., Kim, H.G., Lee, E.J., Bony, B.A., Heo, W.C., Jin, S., Baeck, J.S., Chang, Y., Kim, T.J., Bae, J.E., Chae, K.S., Lee, G.H., Biomaterials 33, 3254 (2012).CrossRef
Lee, S., Kasuga, T., Kato, K., J. Ceram. Soc. Jpn. 118, 428 (2010).CrossRef
Heng, B.C., Das, G.K., Zhao, X., Ma, L.-L., Tan, T.T.-Y., Ng, K.W., Loo, J.S.-C., Biointerphases 5, FA88 (2010).CrossRef
Nichkova, M., Dosev, D., Gee, S.J., Hammock, B.D., Kennedy, I.M., Anal. Chem. 77, 6864 (2005).CrossRef
Petoral, R.M. Jr., Söderlind, F., Klasson, A., Suska, A., Fortin, M.A., Abrikossova, N., Selegård, L., Käll, P.-O., Engström, M., Uvda, K., J. Phys. Chem. C 113, 6913 (2009).CrossRef
Das, G.K., Tan, T.T.Y., J. Phys. Chem. C 112, 11211 (2008).CrossRef
Schubert, D., Dargusch, R., Raitano, J., Chan, S.-W., Biochem. Biophys. Res. Commun. 342, 86 (2006).CrossRef
Kattel, K., Park, J.Y., Xu, W., Kim, H.G., Lee, E.J., Bony, B.A., Heo, W.C., Chang, Y., Kim, T.J., Do, J.Y., Chae, K.S., Kwak, Y.W., Lee, G.H., Colloids Surf. A 394, 85 (2012).CrossRef
Chen, G., Ohulchanskyy, T.Y., Kumar, R., Agren, H., Prasad, P.N., ACS Nano 4, 3163 (2010).CrossRef
Vetrone, F., Naccache, R., de la Fuente, A.J., Sanz-Rodrıíguez, F., Blazquez-Castro, A., Martin Rodriguez, E., Jaque, D., García Solé, J., Capobianco, J.A., Nanoscale 2, 495 (2010).CrossRef
Cao, T., Yang, T., Gao, Y., Yang, Y., Hu, H., Li, F., Inorg. Chem. Commun. 13, 392 (2010).CrossRef
Xiong, L.-Q., Chen, Z.-G., Yu, M.-X., Li, F.-Y., Liu, C., Huang, C.-H., Biomaterials 30, 5592 (2009).CrossRef
Xiong, L., Yang, T., Yang, Y., Xu, C., Li, F., Biomaterials 31, 7078 (2010).CrossRef
Zhou, J., Sun, Y., Du, X., Xiong, L., Hua, H., Li, F., Biomaterials 31, 3287 (2010).CrossRef
Xia, A., Chen, M., Gao, Y., Wu, D., Feng, W., Li, F., Biomaterials 33, 5394 (2012).CrossRef

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 47
Total number of PDF views: 144 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *