Skip to main content Accessibility help
×
Home

Article contents

Metal hydrides for smart window and sensor applications

Published online by Cambridge University Press:  07 June 2013

K. Yoshimura
Affiliation:
Advanced Industrial Science and Technology, Nagoya, Japan; k.yoshimura@aist.go.jp
C. Langhammer
Affiliation:
Department of Applied Physics, Chalmers University of Technology, Sweden; clangham@chalmers.se
B. Dam
Affiliation:
Chemical Engineering Department, Delft University of Technology, The Netherlands; b.dam@tudelft.nl
Get access

Abstract

The hydrogenation of metals often leads to changes in optical properties in the visible range. This allows for fundamental studies of the hydrogenation process, as well as the exploration of various applications using these optical effects. Here, we focus on recent developments in metal hydride-based optical fiber and plasmonic sensors and smart windows. Both applications benefit from the existence of a reflective metallic state, which is lost on hydrogenation and allows for large reversible optical changes. In this article, we review the status of both technologies and their prospects for applications.

Type
Metal hydrides for clean energy applications
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Huiberts, J.N., Griessen, R., Rector, J.H., Wijngaarden, R.J., Dekker, J.P., de Groot, D.G., Koeman, N.J., Nature 380, 231 (1996).CrossRef
Kerssemakers, J.W.J., van der Molen, S.J., Gunther, R., Dam, B., Griessen, R., Phys. Rev. B 65, 075417 (2002).CrossRef
Hoekstra, A.F.Th., Roy, A.S., Rosenbaum, T.F., Griessen, R., Wijngaarden, R.J., Koeman, N.J., Phys. Rev. Lett. 86, 5349 (2001).CrossRef
van Gogh, A.T.M., Nagengast, D.G., Kooij, E.S., Koeman, N.J., Rector, J.H., Griessen, R., Flipse, C.F.J., Smeets, R.J.J.G.A.M., Phys. Rev. B 63, 195105 (2001).CrossRef
Olk, C.H., Tibbetts, G.G., Simon, D., Moleski, J.J., J. Appl. Phys. 94, 720 (2003).CrossRef
Dam, B., Gremaud, R., Broedersz, C., Griessen, R., Scripta Mater. 56, 853 (2007).CrossRef
Gremaud, R., Slaman, M., Schreuders, H., Dam, B., Griessen, R., Appl. Phys. Lett. 91, 231916 (2007).CrossRef
Kalisvaart, W.P., Luber, E.J., Poirier, E., Harrower, C.T., Teichert, A., Wallacher, D., Grimm, N., Steitz, R., Fritzsche, H., Mitlin, D., J. Phys. Chem. C 116, 5868 (2012).CrossRef
Mooij, L.P.A., Baldi, A., Boelsma, C., Shen, K., Wagemaker, M., Pivak, Y., Schreuders, H., Griessen, R., Dam, B., Adv. Energy Mater. 1, 754 (2011).CrossRef
Northemann, K., Pundt, A., Phys. Rev. B 83, 155420 (2011); Y. Pivak, H. Schreuders, B. Dam, Crystals 2, 710 (2012).CrossRef
Felderhoff, M., Bogdanović, B., Int. J. Mol. Sci. 10, 325 (2009).CrossRef
Mardilovich, P.P., She, Y., Ma, Y.H., Rei, M.H., AlChE J. 44, 310 (1998).CrossRef
Butler, M.A., Appl. Phys. Lett. 45, 1007 (1984); M.A. Butler, Sens. Actuators, B 22, 155 (1994).CrossRef
Mercier, V.M.M., van der Sluis, P., Solid State Ionics 145, 17 (2001).CrossRef
Armitage, R., Rubin, M., Richardson, T., O’Brien, N., Chen, Y., Appl. Phys. Lett. 75, 1863 (1999).CrossRef
Jelle, B.P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., Hart, R., Sol. Energy Mater. Sol. Cells 96, 1 (2012).CrossRef
Bange, K., Sol. Energy Mater. Sol. Cells 58, 1 (1999).CrossRef
Janner, A.M., van der Sluis, P., Mercier, V., Electrochim. Acta 46, 2173 (2001).CrossRef
Richardson, T.J., Slack, J.L., Armitage, R.D., Kostecki, R., Farangis, B., Rubin, M.D., Appl. Phys. Lett. 78, 3047 (2001).CrossRef
Myers, W.R., Wang, L.-W., Richardson, T.J., Rubin, M.D., J. Appl. Phys. 91, 4879 (2002).CrossRef
Blomqvist, H., Noreus, D., J. Appl. Phys. 91, 5141 (2002).CrossRef
Yoshimura, K., Yamada, Y., Okada, M., Appl. Phys. Lett. 81, 4709 (2002).CrossRef
Bao, S., Yamada, Y., Tajima, K., Okada, M., Yoshimura, K., Jpn. J. Appl. Phys. 46, L13 (2006).CrossRef
Yamada, Y., Bao, S., Tajima, K., Okada, M., Yoshimura, K., Appl. Phys. Lett. 94, 191910 (2009).CrossRef
Yoshimura, K., Yamada, Y., Bao, S., Okada, M., Jpn. J. Appl. Phys. 46, 4260 (2007).CrossRef
Bao, S., Yamada, Y., Okada, M., Yoshimura, K., Jpn. J. Appl. Phys. 45, L588 (2006).CrossRef
Bao, S., Yamada, Y., Tajima, K., Okada, M., Yoshimura, K., Sol. Energy Mater. Sol. Cells 93, 1642 (2009).CrossRef
Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., Electrochem. Solid-State Lett. 10, J52 (2007).CrossRef
Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., Appl. Phys. Lett. 91, 51908 (2007).CrossRef
Tajima, K., Yamada, Y., Yoshimura, K., J. Electrochem. Soc. 154, J267 (2007).CrossRef
Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., Appl. Phys. Lett. 92, 41912 (2008).CrossRef
Yamada, Y., Bao, S., Tajima, K., Okada, M., Yoshimura, K., Roos, A., Sol. Energy Mater. Sol. Cells 92, 1617 (2008).CrossRef
Yoshimura, K., Yamada, Y., Bao, S., Tajima, K., Okada, M., Sol. Energy Mater. Sol. Cells 93, 2138 (2009).CrossRef
Georg, A., Graf, W., Schweiger, D., Wittwer, V., Nitz, P., Wilson, H.R., Sol. Energy 62, 215 (1998).CrossRef
Wagus, C., Guarr, T., Berman, J., Hayes, C., Myser, M., Durschinger, J., Ander, G., Demiryont, H., Settlemyre, K., Hughes, G., Thurm, D., Levi, M., Mifflin, T., “Advancement of Electrochromic Windows” (Pier Final Project Report of California Energy Commission, CEC-500–2006–052, 2006).
Hübert, T., Boon-Brett, L., Black, G., Banach, U., Sens. Actuators, B 157, 329 (2011).CrossRef
Westerwaal, R., Duim, N., Nieuwenhuijse, I., Perrotton, C., Dabirian, A., van Leeuwen, J.M., Palmisano, V., Dam, B., Sens. Actuators, B 165, 88 (2012).CrossRef
Slaman, M., Dam, B., Pasturel, M., Borsa, D.M., Schreuders, H., Rector, J.H., Griessen, R., Sens. Actuators, B 123, 538 (2007).CrossRef
Gremaud, R., Baldi, A., Gonzalez-Silveira, M., Dam, B., Griessen, R., Phys. Rev. B 77 144204 (2008).CrossRef
Slaman, M., Westerwaal, R., Schreuders, H., Dam, B., Proc. SPIE 8368, 836805 (2012).CrossRef
Kreibig, U., Vollmer, M., Optical Properties of Metal Clusters (Springer-Verlag, Berlin/Heidelberg, 1995), vol. 25.CrossRefGoogle Scholar
Langhammer, C., Larsson, E.M., ACS Catal. 2, 2036 (2012).CrossRef
Bevenot, X., Troullet, A., Veillas, C., Gagnaire, H., Clement, M., Meas. Sci. Technol. 13, 118 (2002).CrossRef
Chadwick, B., Gal, M., Appl. Surf. Sci. 68, 135 (1993).CrossRef
Perrotton, C., Westerwaal, R.J., Javahiraly, N., Slaman, M., Schreuders, H., Dam, B., Meyrueis, P., Opt. Express 41, 382 (2013).CrossRef
Zoric, I., Zäch, M., Kasemo, B., Langhammer, C.G., ACS Nano 5, 2535 (2011).CrossRef
Englebienne, P., Analyst 123, 1599 (1998).CrossRef
Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., Nat. Mater. 7, 442 (2008).CrossRef
McFarland, A.D., Van Duyne, R.P., Nano Lett. 3, 1057 (2003).CrossRef
Langhammer, C., Larsson, E.M., Kasemo, B., Zoric, I., Nano Lett. 10, 3529 (2010).CrossRef
Larsson, E.M., Langhammer, C., Zoric, I., Kasemo, B., Science 326, 1091 (2009).CrossRef
Langhammer, C., Zhdanov, V.P., Zoric, I., Kasemo, B., Phys. Rev. Lett. 104, 135502 (2010).CrossRef
Langhammer, C., Zoric, I., Kasemo, B., Clemens, B.M., Nano Lett. 7, 3122 (2007).CrossRef
Shegai, T., Johansson, P., Langhammer, C., Kall, M., Nano Lett. 12, 2464 (2012).CrossRef
Shegai, T., Langhammer, C., Adv. Mater. 23, 4409 (2011).CrossRef
Zoric, I., Larsson, E.M., Kasemo, B., Langhammer, C., Adv. Mater. 22, 4628 (2010).CrossRef
Liu, N., Tang, M.L., Hentschel, M., Giessen, H., Alivisatos, A.P., Nat. Mater. 10, 631 (2011).CrossRef
Tang, M.L., Liu, N., Dionne, J.A., Alivisatos, A.P., J. Am. Chem. Soc. 133, 13220 (2011).CrossRef
Ameen Poyli, M., Silkin, V.M., Chernov, I.P., Echenique, P.M., Diez Muino, R., Aizpurua, J., J. Phys. Chem. Lett. 3, 2556 (2012).CrossRef
Tittl, A., Kremers, C., Dorfmuller, J., Chigrin, D.N., Giessen, H., Opt. Mater. Express 2, 111 (2012); A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, H. Giessen, Nano Lett. 11, 4366 (2011).CrossRef
Shegai, T., Chen, S., Miljkovic, V.D, Zengin, G., Johansson, P., Kall, M.A., Nat. Commun. 2, 481 (2011).CrossRef
Mongstad, T., Platzer-Bjorkman, Ch., Maehlen, J.P., Mooij, L.P.A., Pivak, Y., Dam, B., Marstein, E.S., Hauback, B.C., Karazhanov, S.Zh., Sol. Energy Mater. Sol. Cells 95, 3596 (2011).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 29
Total number of PDF views: 195 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-54xgk Total loading time: 0.281 Render date: 2021-01-26T23:03:10.872Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Metal hydrides for smart window and sensor applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Metal hydrides for smart window and sensor applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Metal hydrides for smart window and sensor applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *