Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-l8tfn Total loading time: 0.505 Render date: 2022-06-29T16:11:35.917Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Transdimensional material platforms for tunable metasurface design

Published online by Cambridge University Press:  11 March 2020

Deesha Shah
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, USA; shah263@purdue.edu
Zhaxylyk A. Kudyshev
Affiliation:
School of Electrical and Computer Engineering, Birck Nanotechnology Center, and Center for Science of Information, Purdue University, USA; zkudyshe@purdue.edu
Soham Saha
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, USA; saha11@purdue.edu
Vladimir M. Shalaev
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, USA; shalaev@purdue.edu
Alexandra Boltasseva
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, USA; aeb@purdue.edu
Get access

Abstract

As plasmonic materials transition from three-dimensional to two-dimensional (2D) form, unique optical and electronic phenomena arise that are unattainable in bulk materials and conventional thin films. Exceptional sensitivity to external perturbations, including electrical biasing and optical excitation as well as quantum effects, are expected to emerge, as has been demonstrated in graphene. Similarly, metallic or plasmonic films with thicknesses down to a few monolayers, called transdimensional materials (TDMs), are predicted to exhibit remarkably strong tunability of their optical response. The unique properties of 2D materials and TDMs have established them as promising platforms for dynamic nanophotonic devices. While novel 2D materials have been widely explored for nanophotonic devices, until recently, there have been minimal studies on the evolution of the optical properties of plasmonic TDMs. In this article, we highlight progress in exploring the thickness-dependent optical response of plasmonic materials as they approach the 2D regime. Experimental and theoretical investigations of the plasmonic properties of 2D materials, such as graphene and tungsten diselenide, TDMs, and plasmonic thin films, are discussed, with a focus on prospects for their utilization in dynamically tunable flat optical devices or metasurfaces.

Type
Metasurfaces for Flat Optics
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maier, S.A., Plasmonics: Fundamentals and Applications (Springer Science & Business Media, New York, 2007).10.1007/0-387-37825-1CrossRefGoogle Scholar
Murray, W.A., Barnes, W.L., Adv. Mater. 19, 3771 (2007).10.1002/adma.200700678CrossRefGoogle Scholar
Stockman, M.I., Kneipp, K., Bozhevolnyi, S.I., Saha, S., Dutta, A., Ndukaife, J., Kinsey, N., Reddy, H., Guler, U., Shalaev, V.M., Boltasseva, A., Gholipour, B., Krishnamoorthy, H.N.S., MacDonald, K.F., Soci, C., Zheludev, N.I., Savinov, V., Singh, R., Gross, P., Lienau, C., Vadai, M., Solomon, M.L., Barton, D.R., Lawrence, M., Dionne, J.A., Boriskina, S.V., Esteban, R., Aizpurua, J., Zhang, X., Yang, S., Wang, D., Wang, W., Odom, T.W., Accanto, N., de Roque, P.M., Hancu, I.M., Piatkowski, L., van Hulst, N.F., Kling, M.F., J. Opt. 20, 043001 (2018).10.1088/2040-8986/aaa114CrossRefGoogle Scholar
Atwater, H.A., Polman, A., Nat. Mater. 9, 205 (2010).10.1038/nmat2629CrossRefGoogle Scholar
Li, W., Guler, U., Kinsey, N., Naik, G.V., Boltasseva, A., Guan, J., Shalaev, V.M., Kildishev, A.V., Adv. Mater. 26, 7959 (2014).10.1002/adma.201401874CrossRefGoogle Scholar
Gramotnev, D.K., Bozhevolnyi, S.I., Nat. Photonics 4, 83 (2010).10.1038/nphoton.2009.282CrossRefGoogle Scholar
Saha, S., Dutta, A., Kinsey, N., Kildishev, A.V., Shalaev, V.M., Boltasseva, A., ACS Photonics 5, 4423 (2018).10.1021/acsphotonics.8b00885CrossRefGoogle Scholar
Haffner, C., Chelladurai, D., Fedoryshyn, Y., Josten, A., Baeuerle, B., Heni, W., Watanabe, T., Cui, T., Cheng, B., Saha, S., Elder, D.L., Dalton, L.R., Boltasseva, A., Shalaev, V.M., Kinsey, N., Leuthold, J., Nature 556, 483 (2018).10.1038/s41586-018-0031-4CrossRefGoogle Scholar
Kawata, S., Inouye, Y., Verma, P., Nat. Photonics 3, 388 (2009).10.1038/nphoton.2009.111CrossRefGoogle Scholar
Willets, K.A., Wilson, A.J., Sundaresan, V., Joshi, P.B., Chem. Rev. 117, 7538 (2017).10.1021/acs.chemrev.6b00547CrossRefGoogle Scholar
Kinsey, N., Ferrera, M., Shalaev, V.M., Boltasseva, A., J. Opt. Soc. Am. B. 32, 121 (2015).10.1364/JOSAB.32.000121CrossRefGoogle Scholar
Kinsey, N., DeVault, C., Kim, J., Ferrera, M., Shalaev, V.M., Boltasseva, A.A., Optica 2, 616 (2015).10.1364/OPTICA.2.000616CrossRefGoogle Scholar
Yang, Y., Kelley, K., Sachet, E., Campione, S., Luk, T.S., Maria, J.-P., Sinclair, M.B., Brener, I., Nat. Photonics 11, 390 (2017).10.1038/nphoton.2017.64CrossRefGoogle Scholar
Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., Nat. Mater. 7, 442 (2008).10.1038/nmat2162CrossRefGoogle Scholar
Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., de Abajo, F.J.G., Pruneri, V., Altug, H., Science 349, 165 (2015).10.1126/science.aab2051CrossRefGoogle Scholar
Mesch, M., Metzger, B., Hentschel, M., Giessen, H., Nano Lett . 16, 3155 (2016).10.1021/acs.nanolett.6b00478CrossRefGoogle Scholar
Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X., Nature 474, 64 (2011).10.1038/nature10067CrossRefGoogle Scholar
Dionne, J., Diest, K., Sweatlock, L., Atwater, H., Nano Lett . 9, 897 (2009).10.1021/nl803868kCrossRefGoogle Scholar
Ferrera, M., Kinsey, N., Shaltout, A., DeVault, C., Shalaev, V., Boltasseva, A., J. Opt. Soc. Am. B. 34, 95 (2017).10.1364/JOSAB.34.000095CrossRefGoogle Scholar
Wang, Q., Rogers, E.T.F., Gholipour, B., Wang, C.-M., Yuan, G., Teng, J., Zheludev, N.I., Nat. Photonics 10, 60 (2016).10.1038/nphoton.2015.247CrossRefGoogle Scholar
Zhu, Z., Evans, P.G., Haglund, R.F., Valentine, J.G., Nano Lett . 17, 4881 (2017).10.1021/acs.nanolett.7b01767CrossRefGoogle Scholar
Kim, Y., Wu, P.C., Sokhoyan, R., Mauser, K., Glaudell, R., Kafaie Shirmanesh, G., Atwater, H.A., Nano Lett . 19, 3961 (2019).10.1021/acs.nanolett.9b01246CrossRefGoogle Scholar
Li, Z., Zhou, Y., Qi, H., Pan, Q., Zhang, Z., Shi, N.N., Lu, M., Stein, A., Li, C.Y., Ramanathan, S., Yu, N., Adv. Mater. 28, 9117 (2016).CrossRefGoogle ScholarPubMed
Yoo, D., Johnson, T.W., Cherukulappurath, S., Norris, D.J., Oh, S.-H., ACS Nano 9, 10647 (2015).CrossRefGoogle Scholar
Wang, D., Bourgeois, M.R., Lee, W.-K., Li, R., Trivedi, D., Knudson, M.P., Wang, W., Schatz, G.C., Odom, T.W., Nano Lett . 18, 4549 (2018).10.1021/acs.nanolett.8b01774CrossRefGoogle Scholar
Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F., Nat. Nanotechnol. 6, 630 (2011).10.1038/nnano.2011.146CrossRefGoogle Scholar
Huang, Y.-W., Lee, H.W.H., Sokhoyan, R., Pala, R.A., Thyagarajan, K., Han, S., Tsai, D.P., Atwater, H.A., Nano Lett . 16, 5319 (2016).10.1021/acs.nanolett.6b00555CrossRefGoogle Scholar
Park, J., Kang, J.-H., Kim, S.J., Liu, X., Brongersma, M.L., Nano Lett . 17, 407 (2017).10.1021/acs.nanolett.6b04378CrossRefGoogle Scholar
She, A., Zhang, S., Shian, S., Clarke, D.R., Capasso, F., Sci. Adv. 4, eaap9957 (2018).10.1126/sciadv.aap9957CrossRefGoogle Scholar
Yao, Y., Shankar, R., Kats, M.A., Song, Y., Kong, J., Loncar, M., Capasso, F., Nano Lett . 14, 6526 (2014).10.1021/nl503104nCrossRefGoogle Scholar
Shcherbakov, M.R., Liu, S., Zubyuk, V.V., Vaskin, A., Vabishchevich, P.P., Keeler, G., Pertsch, T., Dolgova, T.V., Staude, I., Brener, I., Fedyanin, A.A., Nat. Commun. 8, 17 (2017).10.1038/s41467-017-00019-3CrossRefGoogle Scholar
Clerici, M., Kinsey, N., DeVault, C., Kim, J., Carnemolla, E.G., Caspani, L., Shaltout, A., Faccio, D., Shalaev, V., Boltasseva, A., Ferrera, M., Nat. Commun. 8, 15829 (2017).10.1038/ncomms15829CrossRefGoogle Scholar
Naik, G.V., Shalaev, V.M., Boltasseva, A., Adv. Mater. 25, 3264 (2013).CrossRefGoogle Scholar
Chapman, R., Mulvaney, P., Chem. Phys. Lett. 349, 358 (2001).10.1016/S0009-2614(01)01145-9CrossRefGoogle Scholar
Novo, C., Mulvaney, P., Nano Lett . 7, 520 (2007).CrossRefGoogle Scholar
Naik, G.V., Kim, J., Boltasseva, A., Opt. Mater. Express 1, 1090 (2011).CrossRefGoogle Scholar
Noginov, M.A., Gu, L., Livenere, J., Zhu, G., Pradhan, A.K., Mundle, R., Bahoura, M., Barnakov, Y.A., Podolskiy, V.A., Appl. Phys. Lett. 99, 2014 (2011).10.1063/1.3604792CrossRefGoogle Scholar
Kim, J., Naik, G.V., Gavrilenko, A.V., Dondapati, K., Gavrilenko, V.I., Prokes, S.M., Glembocki, O.J., Shalaev, V.M., Boltasseva, A., Phys. Rev. X 3, 041037 (2013).Google Scholar
Emani, N.K., Kildishev, A.V., Shalaev, V.M., Boltasseva, A., Nanophotonics 4 (2015), doi:10.1515/nanoph-2015-0014.CrossRefGoogle Scholar
Dabidian, N., Kholmanov, I., Khanikaev, A.B., Tatar, K., Trendafilov, S., Mousavi, S.H., Magnuson, C., Ruoff, R.S., Shvets, G., ACS Photonics 2, 216 (2015).CrossRefGoogle Scholar
Shaltout, A.M., Shalaev, V.M., Brongersma, M.L., Science 364 (2019), doi:10.1126/science.aat3100.CrossRefGoogle Scholar
Geim, A.K., Novoselov, K.S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J.D., Soljačić, M., Science 353, 263 (2016).10.1126/science.aaf6308CrossRefGoogle Scholar
García de Abajo, F.J., ACS Photonics 1, 135 (2014).10.1021/ph400147yCrossRefGoogle Scholar
Manjavacas, A., de Abajo, F.J.G., Nat. Commun. 5, 3548 (2014).10.1038/ncomms4548CrossRefGoogle Scholar
Boltasseva, A., Shalaev, V.M., ACS Photonics 6, 1 (2019).CrossRefGoogle Scholar
Liu, X., Kang, J.H., Yuan, H., Park, J., Cui, Y., Hwang, H.Y., Brongersma, M.L., ACS Photonics 5, 1493 (2018).10.1021/acsphotonics.7b01517CrossRefGoogle Scholar
Morea, M., Zang, K., Kamins, T.I., Brongersma, M.L., Harris, J.S., ACS Photonics 5, 4702 (2018).10.1021/acsphotonics.8b01383CrossRefGoogle Scholar
Liu, X., Zang, K., Kang, J.-H., Park, J., Harris, J.S., Kik, P.G., Brongersma, M.L., ACS Photonics 5, 4484 (2018).10.1021/acsphotonics.8b00945CrossRefGoogle Scholar
Wood, M.G., Campione, S., Parameswaran, S., Luk, T.S., Wendt, J.R., Serkland, D.K., Keeler, G.A., Optica 5, 233 (2018).10.1364/OPTICA.5.000233CrossRefGoogle Scholar
Ma, Z., Li, Z., Liu, K., Ye, C., Sorger, V.J., Nanophotonics 4, 198 (2015).CrossRefGoogle Scholar
Abb, M., Albella, P., Aizpurua, J., Muskens, O.L., Nano Lett . 11, 2457 (2011).CrossRefGoogle Scholar
Campione, S., Brener, I., Marquier, F., Phys. Rev. B. Rapid Commun. 91, 121408 (2015).10.1103/PhysRevB.91.121408CrossRefGoogle Scholar
Vassant, S., Hugonin, J.-P., Marquier, F., Greffet, J.-J., Opt. Express 20, 23971 (2012).CrossRefGoogle Scholar
Anopchenko, A., Tao, L., Arndt, C., Lee, H.W.H., ACS Photonics 5, 2631 (2018).10.1021/acsphotonics.7b01373CrossRefGoogle Scholar
Sorger, V.J., Lanzillotti-Kimura, N.D., Ma, R.-M.M., Zhang, X., Nanophotonics 1, 17 (2012).CrossRefGoogle Scholar
Cleary, J.W., Smith, E.M., Leedy, K.D., Grzybowski, G., Guo, J., Opt. Mater. Express 8, 1231 (2018).CrossRefGoogle Scholar
Zheng, H., Zhang, R.-J., Li, D.-H., Chen, X., Wang, S.-Y., Zheng, Y.-X., Li, M.-J., Hu, Z.-G., Dai, N., Chen, L.-Y., Nanoscale Res. Lett. 13, 149 (2018).10.1186/s11671-018-2563-9CrossRefGoogle Scholar
Zhu, B.L., Wang, J., Zhu, S.J., Wu, J., Zeng, D.W., Xie, C.S., Phys. Status Solidi A Appl. Mater. Sci. 209, 1251 (2012).10.1002/pssa.201228014CrossRefGoogle Scholar
Medvedeva, J.E., Buchholz, D.B., Chang, R.P.H., Adv. Electron. Mater. 3, 1700082 (2017).10.1002/aelm.201700082CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., Shen, Y.R., Science 320, 206 (2008).CrossRefGoogle Scholar
Sun, Z., Martinez, A., Wang, F., Nat. Photonics 10, 227 (2016).10.1038/nphoton.2016.15CrossRefGoogle Scholar
Amin, R., Ma, Z., Maiti, R., Khan, S., Khurgin, J.B., Dalir, H., Sorger, V.J., Appl. Opt. 57, D130 (2018).10.1364/AO.57.00D130CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C., Nat. Photonics 4, 611 (2010).10.1038/nphoton.2010.186CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Li, Y., Li, Z., Chi, C., Shan, H., Zheng, L., Fang, Z., Adv. Sci. 4, 1600430 (2017).10.1002/advs.201600430CrossRefGoogle Scholar
Ni, G.X., McLeod, A.S., Sun, Z., Wang, L., Xiong, L., Post, K.W., Sunku, S.S., Jiang, B.-Y., Hone, J., Dean, C.R., Fogler, M.M., Basov, D.N., Nature 557, 530 (2018).10.1038/s41586-018-0136-9CrossRefGoogle Scholar
Mak, K.F., Ju, L., Wang, F., Heinz, T.F., Solid State Commun . 152, 1341 (2012).CrossRefGoogle Scholar
Xia, F., Yan, H., Avouris, P., Proc. IEEE 101, 1717 (2013).CrossRefGoogle Scholar
Vakil, A., Engheta, N., Science 332, 1291 (2011).CrossRefGoogle Scholar
Brar, V.W., Jang, M.S., Sherrott, M., Lopez, J.J., Atwater, H.A., Nano Lett . 13, 2541 (2013).CrossRefGoogle Scholar
Fang, Z., Wang, Y., Schlather, A.E., Liu, Z., Ajayan, P.M., García de Abajo, F.J., Nordlander, P., Zhu, X., Halas, N.J., Nano Lett . 14, 299 (2014).CrossRefGoogle Scholar
Thongrattanasiri, S., Koppens, F.H.L., García de Abajo, F.J., Phys. Rev. Lett. 108, 047401 (2012).CrossRefGoogle Scholar
Fang, Z., Thongrattanasiri, S., Schlather, A., Liu, Z., Ma, L., Wang, Y., Ajayan, P.M., Nordlander, P., Halas, N.J., García De Abajo, F.J., ACS Nano 7, 2388 (2013).CrossRefGoogle Scholar
Freitag, M., Low, T., Zhu, W., Yan, H., Xia, F., Avouris, P., Nat. Commun. 4, 1951 (2013).10.1038/ncomms2951CrossRefGoogle Scholar
Emani, N.K., Chung, T.-F., Kildishev, A.V., Shalaev, V.M., Chen, Y.P., Boltasseva, A., Nano Lett . 14, 78 (2014).10.1021/nl403253cCrossRefGoogle Scholar
Mousavi, S.H., Kholmanov, I., Alici, K.B., Purtseladze, D., Arju, N., Tatar, K., Fozdar, D.Y., Suk, J.W., Hao, Y., Khanikaev, A.B., Ruoff, R.S., Shvets, G., Nano Lett . 13, 1111 (2013).CrossRefGoogle Scholar
Yao, Y., Kats, M.A., Shankar, R., Song, Y., Kong, J., Loncar, M., Capasso, F., Nano Lett . 14, 214 (2014).10.1021/nl403751pCrossRefGoogle Scholar
Fang, J., Wang, D., DeVault, C.T., Chung, T.-F., Chen, Y.P., Boltasseva, A., Shalaev, V.M., Kildishev, A.V., Nano Lett . 17, 57 (2017).10.1021/acs.nanolett.6b03202CrossRefGoogle Scholar
Krasnok, A., Lepeshov, S., Alú, A., Opt. Express 26, 15972 (2018).CrossRefGoogle Scholar
Tonndorf, P., Schmidt, R., Böttger, P., Zhang, X., Börner, J., Liebig, A., Albrecht, M., Kloc, C., Gordan, O., Zahn, D.R.T., Michaelis de Vasconcellos, S., Bratschitsch, R., Opt. Express 21, 4908 (2013).10.1364/OE.21.004908CrossRefGoogle Scholar
Akselrod, G.M., Ming, T., Argyropoulos, C., Hoang, T.B., Lin, Y., Ling, X., Smith, D.R., Kong, J., Mikkelsen, M.H., Nano Lett . 15, 3578 (2015).CrossRefGoogle Scholar
Chen, H., Yang, J., Rusak, E., Straubel, J., Guo, R., Myint, Y.W., Pei, J., Decker, M., Staude, I., Rockstuhl, C., Lu, Y., Kivshar, Y.S., Neshev, D., Sci. Rep. 6, 22296 (2016).CrossRefGoogle Scholar
Chen, H., Liu, M., Xu, L., Neshev, D.N., Beilstein J. Nanotechnol. 9, 780 (2018).10.3762/bjnano.9.71CrossRefGoogle Scholar
Schaibley, J.R., Yu, H., Clark, G., Rivera, P., Ross, J.S., Seyler, K.L., Yao, W., Xu, X., Nat. Rev. Mater. 1, 1 (2016).10.1038/natrevmats.2016.55CrossRefGoogle Scholar
Xu, X., Yao, W., Xiao, D., Heinz, T.F., Nat. Phys. 10, 343 (2014).10.1038/nphys2942CrossRefGoogle Scholar
Mak, K.F., He, K., Shan, J., Heinz, T.F., Nat. Nanotechnol. 7, 494 (2012).CrossRefGoogle Scholar
Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., Feng, J., Nat. Commun. 3, 887 (2012).10.1038/ncomms1882CrossRefGoogle Scholar
Hu, G., Hong, X., Wang, K., Wu, J., Xu, H.-X., Zhao, W., Liu, W., Zhang, S., Garcia-Vidal, F., Wang, B., Lu, P., Qiu, C.-W., Nat. Photonics 13, 467 (2019).CrossRefGoogle Scholar
Wu, Z., Li, J., Zhang, X., Redwing, J.M., Zheng, Y., Adv. Mater. 31, 1904132 (2019).CrossRefGoogle Scholar
Xiong, F., Zhang, J., Zhu, Z., Yuan, X., Qin, S., J. Opt. 19, 075002 (2017).10.1088/2040-8986/aa7292CrossRefGoogle Scholar
Han, L., Wang, L., Xing, H., Chen, X., ACS Photonics 5, 3828 (2018).CrossRefGoogle Scholar
Xiao, S., Liu, T., Cheng, L., Zhou, C., Jiang, X., Li, Z., Xu, C., J. Light. Technol. 37, 3290 (2019).CrossRefGoogle Scholar
Huang, X., Cai, Y., Feng, X., Tan, W.C., Hasan, D.M.N., Chen, L., Chen, N., Wang, L., Huang, L., Duffin, T.J., Nijhuis, C.A., Zhang, Y.-W., Lee, C., Ang, K.-W., ACS Photonics 5, 3116 (2018).CrossRefGoogle Scholar
Qian, H., Xiao, Y., Liu, Z., Nat. Commun. 7, 13153 (2016).CrossRefGoogle Scholar
Laref, S., Cao, J., Asaduzzaman, A., Runge, K., Deymier, P., Ziolkowski, R.W., Miyawaki, M., Muralidharan, K., Opt. Express 21, 11827 (2013).10.1364/OE.21.011827CrossRefGoogle Scholar
Ming, W., Blair, S., Liu, F., J. Phys. Condens. Matter 26, 505302 (2014).CrossRefGoogle Scholar
Lin, I.-B., Sheu, T.W.-H., Li, J.-H., Opt. Express 22, 30725 (2014).CrossRefGoogle Scholar
Qian, H., Xiao, Y., Lepage, D., Chen, L., Liu, Z., Nanophotonics 4, 413 (2015).CrossRefGoogle Scholar
Bondarev, I.V., Shalaev, V.M., Opt. Mater. Express 7, 3731 (2017).CrossRefGoogle Scholar
Shah, D., Catellani, A., Reddy, H., Kinsey, N., Shalaev, V., Boltasseva, A., Calzolari, A., ACS Photonics 5, 2816 (2018).10.1021/acsphotonics.7b01553CrossRefGoogle Scholar
Sundararaman, R., Christensen, T., Ping, Y., Rivera, N., Joannopoulos, J.D., Soljačić, M., Narang, P., https://arxiv.org/abs/1806.02672v1 (2018).Google Scholar
Echarri, A.R., Cox, J.D., de Abajo, F.J.G., Optica 6, 630 (2019).CrossRefGoogle Scholar
Kossoy, A., Merk, V., Simakov, D., Leosson, K., Kéna-Cohen, S., Maier, S.A., Adv. Opt. Mater. 3, 71 (2015).10.1002/adom.201400345CrossRefGoogle Scholar
Shah, D., Reddy, H., Kinsey, N., Shalaev, V.M., Boltasseva, A., Adv. Opt. Mater. 5, 1700065 (2017).CrossRefGoogle Scholar
Abd El-Fattah, Z.M., Mkhitaryan, V., Brede, J., Fernández, L., Li, C., Guo, Q., Ghosh, A., Echarri, A.R., Naveh, D., Xia, F., Ortega, J.E., García de Abajo, F.J., ACS Nano 13, 7771 (2019).CrossRefGoogle Scholar
Maniyara, R.A., Rodrigo, D., Yu, R., Canet-Ferrer, J., Ghosh, D.S., Yongsunthon, R., Baker, D.E., Rezikyan, A., de Abajo, F.J.G., Pruneri, V., Nat. Photonics 13, 328 (2019).CrossRefGoogle Scholar
Formica, N., Ghosh, D.S., Carrilero, A., Chen, T.L., Simpson, R.E., Pruneri, V., ACS Appl. Mater. Interfaces 5, 3048 (2013).CrossRefGoogle Scholar
Lemasters, R., Zhang, C., Manjare, M., Zhu, W., Song, J., Urazhdin, S., Lezec, H.J., Agrawal, A., Harutyunyan, H., ACS Photonics (2019), doi:10.1021/acsphotonics.9b00907.Google Scholar
Jiang, H., Reddy, H., Shah, D., Kudyshev, Z.A., Choudhury, S., Wang, D., Jiang, Y., Kildishev, A.V., Nanoscale 11, 11167 (2019).10.1039/C9NR00205GCrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Transdimensional material platforms for tunable metasurface design
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Transdimensional material platforms for tunable metasurface design
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Transdimensional material platforms for tunable metasurface design
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *