Skip to main content

Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes

  • Jeffrey W. Long (a1), Daniel Bélanger (a2), Thierry Brousse (a3), Wataru Sugimoto (a4), Megan B. Sassin (a5) and Olivier Crosnier (a6)...

Ongoing technological advances in such disparate areas as consumer electronics, transportation, and energy generation and distribution are often hindered by the capabilities of current energy storage/conversion systems, thereby driving the search for high-performance power sources that are also economically viable, safe to operate, and have limited environmental impact. Electrochemical capacitors (ECs) are a class of energy-storage devices that fill the gap between the high specific energy of batteries and the high specific power of conventional electrostatic capacitors. The most widely available commercial EC, based on a symmetric configuration of two high-surface-area carbon electrodes and a nonaqueous electrolyte, delivers specific energies of up to ∼6 Whkg–1 with sub-second response times. Specific energy can be enhanced by moving to asymmetric configurations and selecting electrode materials (e.g., transition metal oxides) that store charge via rapid and reversible faradaic reactions. Asymmetric EC designs also circumvent the main limitation of aqueous electrolytes by extending their operating voltage window beyond the thermodynamic 1.2 V limit to operating voltages approaching ∼2 V, resulting in high-performance ECs that will satisfy the challenging power and energy demands of emerging technologies and in a more economically and environmentally friendly form than conventional symmetric ECs and batteries.

Hide All
1.Conway B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, New York 1999).
2.Conway B.E., J. Electrochem. Soc. 138, 1539 (1991).
3.Burke A., J. Power Sources 91, 37 (2000).
4.Huggins R.A., Solid State Ionics 134, 179 (2000).
5.Conte M., Fuel Cells 10, 806 (2010).
6.Burke A., Int. J. Energy Res. 34, 133 (2010).
7.Rightmire R.A., U.S. Patent 3,288,641 (November 29, 1966).
11.Frackowiak E., Béguin F., Carbon 39, 937 (2001).
12.Frackowiak E., Phys. Chem. Chem. Phys. 9, 1774 (2007).
13.Zhang L.L., Zhao X.S., Chem. Soc. Rev. 38, 2520 (2009).
14.Simon P., Burke A., ECS Interface 17 (1), 38 (2008).
15.Biener J., Stadermann M., Suss M., Worsley M.A., Biener M.M., Rose K.A., Baumann T.F., Energy Environ. Sci. 4, 656 (2011).
16.Zhang H., Cao G.P., Yang Y.S., Energy Environ. Sci. 2, 932 (2009).
17.Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P.L., Science 313, 1760 (2006).
18.Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S., Nano Lett. 8, 3498 (2008).
19.Miller J., Outlaw R.A., Holloway B.C., Science 329, 1637 (2010).
20.Choudhury N.A., Sampath S., Shukla A.K., Energy Environ. Sci. 2, 55 (2009).
21.Conway B.E., Birss V., Wojtowicz J., J. Power Sources 66, 1 (1997).
22.Simon P., Gogotsi Y., Nat. Mater. 7, 845 (2008).
23.Zhao X., Sánchez B.M., Dobson P.J., Grant P.S., Nanoscale 3, 839 (2011).
24.Liu T.C., Pell W.G., Conway B.E., Roberson S.L., J. Electrochem. Soc. 145, 1882 (1998).
25.Choi D., Blomgren G.E., Kumta P.N., Adv. Mater. 18, 1178 (2006).
26.Snook G.A., Kao P., Best A.S., J. Power Sources 196, 1 (2011).
27.Zheng J.P., Cyang P.J., Jow T.R., J. Electrochem. Soc. 142, 2699 (1995).
28.Dmowski W., Egami T., Swider-Lyons K.E., Love C.T., Rolison D.R., J. Phys. Chem. B 106, 12677 (2002).
29.Fu R., Ma Z., Zheng J.P., J. Phys. Chem. B 106, 3592 (2002).
30.Sugimoto W., Iwata H., Yokoshima K., Murakami Y., Takasu Y., J. Phys. Chem. B 109, 7330 (2005).
31.Sugimoto W., Iwata H., Yasunaga Y., Murakami Y., Takasu Y., Angew. Chem. Int. Ed. 42, 4092 (2003).
32.Fukuda K., Saida T., Sato J., Yonezawa M., Takasu Y., Sugimoto W., Inorg. Chem. 49, 4391 (2010).
33.Fukuda K., Kato H., Sugimoto W., Takasu Y., J. Solid State Chem. 182, 2997 (2009).
34.Kim H., Popov B.N., J. Power Sources 104, 52 (2002).
35.Min M., Machida K., Jang J.H., Naoi K., J. Electrochem. Soc. 153, A334 (2006).
36.Naoi K., Ishimoto S., Ogihara N., Nakagawa Y., Hatta S., J. Electrochem. Soc. 156 A52 (2009).
37.Chervin C.N., Lubers A.M., Long J.W., Rolison D.R., J. Electroanal. Chem. 644, 155 (2010).
38.Arnold C.B., Wartena R.C., Swider-Lyons K.E., Piqué A., J. Electrochem. Soc. 150, A571 (2003).
39.Sugimoto W., Yokoshima K., Ohuchi K., Murakami Y., Takasu Y., J. Electrochem. Soc. 153, A255 (2006).
40.Lee H.Y., Goodenough J.B., J. Solid State Chem. 144, 220 (1999).
41.Bélanger D., Brousse T., Long J.W., ECS Interface 17 (1), 49 (2008).
42.Zhang Z.W., Chen G.Z., Energy Mater. 3, 186 (2008).
43.Wei W.F., Cui X.W., Chen W.X., Ivey D.G., Chem. Soc. Rev. 40, 1697 (2011).
44.Toupin M., Brousse T., Bélanger D., Chem. Mater. 16, 3184 (2004).
45.Kuo S.-L., Wu N.-L., J. Electrochem. Soc. 153, A1317 (2006).
46.Kanoh H., Tang W., Makita Y., Ooi K., Langmuir 13, 6845 (1997).
47.Ghodbane O., Pascal J.-L., Favier F., ACS Appl. Mater. Interfaces 1, 1130 (2009).
48.Pang S.-C., Anderson M.A., Chapman T.W., J. Electrochem. Soc. 147, 444 (2000).
49.Brousse T., Toupin M., Dugas R., Athouël L., Crosnier O., Bélanger D., J. Electrochem. Soc. 153, A2171 (2006).
50.Lee H.Y., Kim S.Y., Lee H.Y., Electrochem. Solid-State Lett. 4, A19 (2001).
51.Dong X., Shen W., Gu J., Xiong L., Zhu Y., Li H., Shi J., J. Phys. Chem. B 110, 6015 (2006).
52.Subramanian V., Zhu H.W., Wei B.Q., Electrochem. Commun. 8, 827 (2006).
53.Ma S.B., Nam K.W., Yoon W.S., Yang X.Q., Ahn K.Y., Oh K.H., Kim K.B., J. Power Sources 178, 43 (2008).
54.Bordjiba T., Bélanger D., J. Electrochem. Soc. 156, A378 (2009).
55.Zhang S., Peng C., Ng K.C., Chen G.Z., Electrochim. Acta 55, 7447 (2010).
56.Fischer A.E., Pettigrew K.A., Rolison D.R., Stroud R.M., Long J.W., Nano Lett. 7, 281 (2007).
57.Yan J., Fan Z.J., Wei T., Qian W.Z., Zhang M.L., Wei F., Carbon 48, 3825 (2010).
58.Hsieh Y.C., Lee K.T., Lin Y.P., Wu N.L., Donne S.W., J. Power Sources 177, 660 (2008).
59.Ataherian F., Lee K.-T., Wu N.-L., Electrochim. Acta 55, 7429 (2010).
60.Cottineau T., Toupin M., Delahaye T., Brousse T., Bélanger D., Appl. Phys. A 82, 599 (2006).
61.Raymundo-Pinero E., Khomenko V., Frackowiak E., Béguin F., J. Electrochem. Soc. 152, A229 (2005).
62.Razoumov S., Litvinenko S., Beliakov A., “Asymmetric electrochemical capacitor and method of making,” U.S. Patent 6,222,723 (April 2001).
63.Pell W.G., Conway B.E., J. Power Sources 136, 334 (2004)., see technology section (PbC® technology).
66.Hong M.S., Lee S.H., Kim S.W., Electrochem. Solid-State Lett. 5, A227 (2002).
67.Brousse T., Toupin M., Bélanger D., J. Electrochem. Soc. 151, A614 (2004).
68.Khomenko V., Raymundo-Piñero E., Frackowiak E., Béguin F., Appl. Phys. A 82, 567 (2006).
69.Béguin F., Kierzek K., Friebe M., Jankowska A., Machnikowski J., Juewicz K., Frackowiak E., Electrochim. Acta 51, 2161 (2006).
70.Qin X., Gao X.P., Liu H., Yuan H.T., Yan D.Y., Gong W.L., Song D.Y., Electrochem. Solid-State Lett. 3, 532 (2000).
71.Vix-Guterl C., Frackowiak E., Jurewicz K., Friebe M., Parmentier J., Béguin F., Carbon 43, 1293 (2005).
72.Jurewicz K., Frackowiak E., Béguin F., Appl. Phys. A 78, 981 (2004).
73.Béguin F., Friebe M., Jurewicz K., Vix-Guterl C., Dentzer J., Frackowiak E., Carbon 44, 2392 (2006).
74.Qu D., J. Power Sources 179, 310 (2008).
75.Bleda-Martínez M.J., Pérez J.M., Linares-Solano A., Morallón E., Cazorla-Amorós D., Carbon 46, 1053 (2008).
76.Kalinathan K., DesRoches D.P., Liu X.R., Pickup P.G., J. Power Sources 181, 182 (2008).
77.Pognon G., Brousse T., Demarconnay L., Bélanger D., J. Power Sources 196, 4117 (2011).
78.Andreas H.A., Conway B.E., Electrochim. Acta 51, 6510 (2006).
79.Brousse T., Bélanger D., Electrochem. Solid-State Lett. 6, A244 (2003).
80.Jin W.-H., Cao G.T., Sun J.Y., J. Power Sources 175 686 (2008).
81.Sassin M.B., Mansour A.N., Pettigrew K.A., Rolison D.R., Long J.W., ACS Nano 4, 4505 (2010).
82.Santos-Peña J., Crosnier O., Brousse T., Electrochim. Acta 55, 7511 (2010).
83.Ng K.C., Zhang S., Peng C., Chen G.Z., J. Electrochem. Soc. 156, A846 (2009).
84.Reiman K.H., Brace K.M., Gordon-Smith T.J., Nandhakumar I., Attard G.S., Owen J.R., Electrochem. Comm. 8, 517 (2006).
85.Lu L., Zhu Y., Li F., Zhuang W., Chan K.Y., Lu X., J. Mater. Chem. 20, 7645 (2010).
86.Luo J.-Y., Xia Y.-Y., J. Power Sources 186, 224 (2009).
87.Sarangapani S., in Handbook of Solid State Batteries and Capacitors, Munshi M.Z.A., Ed. (World Scientific, Singapore, 1995), pp. 601.
88.Stoller M.D., Ruoff R.S., Energy Environ. Sci. 3, 1294 (2010).
89.Burke A., Miller M., Electrochim. Acta 55, 7538 (2010).
90.Peng C., Zhang S., Zhou X., Chen G.Z., Energy Environ. Sci. 3, 1499 (2010).
91.Demarconnay L., Raymundo-Piñero E., Béguin F., J. Power Sources 196, 580 (2011).
92.Burke A., Miller M., J. Power Sources 196, 514 (2011).
93.Zheng J.P., J. Electrochem. Soc. 150, A484 (2003).
94.Battery Test Manual for Plug-in Hybrid Electric Vehicles, U.S. Department of Energy, Vehicle Technology Program, INL/EXT-07–12536 (March 2008).
95.Taberna P.L., Simon P., Fauvarque J.F., J. Electrochem. Soc. 150, A292 (2003).
96.Brousse T., Taberna P.L., Crosnier O., Dugas R., Guillemet P., Scudeller Y., Zhou Y., Favier F., Bélanger D., Simon P., J. Power Sources 173, 633 (2007).
97.Wu Z.-S., Ren W., Wang D.-W., Li F., Liu B., Cheng H.-M., ACS Nano 4, 5835 (2010).
98.Lin Y.-P., Wu N.-L., J. Power Sources 196, 851 (2011).
99.Yuan A., Wang X., Wang Y., Hu J., Energy Convers. Manage. 51, 2588 (2010).
100.Khomenko V., Raymundo-Piñero E., Béguin F., J. Power Sources 153, 183 (2006).
101.Wang Y.-G., Xia Y.-Y., J. Electrochem. Soc. 153, A450 (2006).
102.Qu Q., Li L., Tian S., Guo W., Wu Y., Holze R., J. Power Sources 195, 2789 (2010).
103.Malak A., Fic K., Lota G., Vix-Guterl C., Frackowiak E., J. Solid State Electrochem. 14, 811 (2010).
104.Staiti P., Lufrano F., Electrochim. Acta 55, 7436 (2010).
105.Algharaibeh Z., Pickup P.G., Electrochem. Commun. 13, 147 (2011).
106.Algharaibeh Z., Liu X., Pickup P.G., J. Power Sources 187, 640 (2009).
107.Khomenko V., Raymundo-Pinero E., Béguin F., J. Power Sources 195, 4234 (2010).
108.Yu N., Gao L., Electrochem. Commun. 11, 220 (2009).
109.Suppes G.M., Cameron C.G., Freund M.S., J. Electrochem. Soc. 157, A1030 (2010).
110.Lang J.-W., Kong L.-B., Liu M., Luo Y.-C., Kang L., J. Electrochem. Soc. 157, A1341 (2010).
111.Inoue H., Namba Y., Higuchi E., J. Power Sources 195, 6239 (2010).
112.Chang K.-H., Hu C.-C., Huang C.-M., Liu Y.-L., Chang C.-I, J. Power Sources 196, 2387 (2011).
113.Brousse T., Bélanger D., Electrochem. Solid-State Lett. 6, A244 (2003).
114.Lin Y.-P., Wu N.-L., J. Power Sources 196, 851 (2011).
115.Guillemet P., Scudeller Y., Brousse T., J. Power Sources 157, 630 (2006).
116.Klementov A.D., Litvinenko S.V., Stepanov A.V., Varakin I.N., Proceedings of the 11th Seminar on Double-Layer Capacitors, Deerfield Beach, FL, USA, 3–5 December 2001.
117.Mosqueda H.A., Crosnier O., Athouël L., Dandeville Y., Scudeller Y., Guillemet P.H., Schleich D.M., Brousse T., Electrochim. Acta 55, 7479 (2010).
118.Brousse T., Taberna P.L., Crosnier O., Dugas R., Guillemet P., Scudeller Y., Zhou Y., Favier F., Bélanger D., Simon P., J. Power Sources 173, 633 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 31
Total number of PDF views: 355 *
Loading metrics...

Abstract views

Total abstract views: 1072 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.