Skip to main content
×
Home
    • Aa
    • Aa

Erbium-Doped Optical-Waveguide Amplifiers on Silicon

Abstract

Thin-film integrated optics is becoming more and more important in optical-communications technology. The fabrication of passive devices such as planar optical waveguides, splitters, and multiplexers is now quite well-developed. Devices based on this technology are now commercially available. One step to further improve this technology is to develop optical amplifiers that can be integrated with these devices. Such amplifiers can compensate for the losses in splitters or other optical components, and can also serve as pre-amplifiers for active devices such as detectors.

In optical-fiber technology, erbium-doped fiber amplifiers, are used in long-distance fiber-communications links. They use an optical transition in Er3+ at a wavelength of 1.54 μm for signal amplification, and their success has set a standard of optical communication at this wavelength. Using the same concept of Er doping, planar-waveguide amplifiers are now being developed. For these devices, silicon is often used as a substrate, so that optoelectronic integration with other devices in or on Si (electrical devices, or Si-based light sources, detectors, and modulators) may become possible. Figure 1 shows an example of a silicon-based optical integrated circuit5 in which a 1 × 4 splitter is combined with an amplifying section.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. W.J. Miniscalco , J. Lightwave Technol. 9 (1991) p. 234.

2. A. Polman , J. Appl. Phys. 82 (1997) p. 1.

3. P.J. Mears , L. Reekie , I.M. Jauncey , and D.N. Payne , Electron. Lett. 23 (1987) p. 1026.

6. For example, see P.D. Townsend , Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).

7. R.V. Ramaswamy and R. Srivastava , J. Lightwave Technol. 6 (1988) p. 984.

8. K. Hattori , T. Kitagawa , M. Oguma , M. Wada , J. Temmyo , and M. Horiguchi , Electron. Lett. 29 (1993) p. 357.

10. G.N. van den Hoven , R.J.I.M. Koper , A. Polman , C. van Dam , J.W.M. van Uffelen , and M.K. Smit , Appl. Phys. Lett. 68 (1996) p. 1886.

11. K. Arai , H. Namikawa , K. Kumata , T. Honda , Y. Ishii , and T. Handa , J. Appl. Phys. 59 (1986) p. 3430.

12. G.N. van den Hoven , E. Snoeks , A. Polman , J.W.M. van Uffelen , Y.S. Oei , and M.K. Smit , Appl. Phys. Lett. 62 (1993) p. 3065.

13. G.N. van den Hoven , A. Polman , E. Alves , M.F. da Silva , A.A. Melo , and J.C. Soares , J. Mater. Res. 12 (1997) p. 1401.

15. M.P. Hehlen , N.J. Cockroft , T.R. Gosnell , and A.J. Bruce , Phys. Rev. B56 (1997) p. 9302.

16. G.N. van den Hoven , E. Snoeks , A. Polman , C. van Dam , J.W.M. van Uffelen , and M.K. Smit , J. Appl. Phys. 79 (1996) p. 1258.

19. F. Auzel , in Radiationless Processes, edited by B. DiBartolo (Plenum Press, New York, 1980).

20. E. Snoeks , P.G. Kik , and A. Polman , Opt. Mater. 5 (1996) p. 159.

21. Y. Yan , A.J. Faber , and H. de Waal , J. Non-Cryst. Solids 181 (1995) p. 283.

22. G.N. van den Hoven , J.A. van der Elsken , A. Polman , C. van Dam , J.W.M. van Uffelen , and M.K. Smit , Appl. Opt. 36 (1997) p. 3338.

23. K. Hattori , T. Kitagawa , M. Oguma , Y. Ohmori , and M. Horiguchi , Electron. Lett. 30 (1994) p. 856.

24. R.N. Ghosh , J. Shumulovich , C.F. Kane , M.R.X. de Barros , G. Nykolak , A.J. Bruce , and P.C. Becker , IEEE Photonics Technol. Lett. 8 (1996) p. 518.

25. J. Shumulovich , A. Wong , Y.H. Wong , P.C. Becker , A.J. Bruce , and R. Adar , Electron. Lett. 28 (1992) p. 1181.

27. J-M.P. Delavaux , S. Granlund , O. Mizuhara , L.D. Tzeng , D. Barbier , M. Rattay , F. Saint Andre , and A. Kevorkian , IEEE Photonics Technol. Lett. 9 (1997) p. 247.

29. Y.C. Yan , A.J. Faber , H. de Waal , A. Polman , and P.G. Kik , Appl. Phys. Lett. 71 (1997) p. 2922.

30. L.H. Slooff , A. Polman , M.P. Oude Wolbers , F.C.J.M. van Veggel , D.N. Reinhoudt , and J.W. Hofstraat , J. Appl. Phys. 83 (1998) p. 497.

33. A. Polman , G.N. van den Hoven , J.S. Custer , J.H. Shin , R. Serna , and P. P.F.A. Alkemade , J. Appl. Phys. 77 (1995) p. 1256.

34. G. Franzò , S. Coffa , F. Priolo , and C. Spinella , J. Appl. Phys. 81 (1997) p. 2784.

35. B. Zheng , J. Michel , F.Y.G. Ren , L.C. Kimerling , D.C. Jacobson , and J.M. Poate , Appl. Phys. Lett. 64 (1994) p. 2842.

36. S. Coffa , G. Franzò , and F. Priolo , Appl. Phys. Lett. 69 (1996) p. 2077.

37. J. Palm , F. Gan , B. Zheng , J. Michel , and L.C. Kimerling , Phys. Rev. B54 (1996) p. 17603.

38. R. Serna , Jung H. Shin , M. Lohmeier , E. Vlieg , A. Polman , and P.F.A. Alkemade , J. Appl. Phys. 79 (1996) p. 2658.

39. A. Reittinger , J. Stimmer , and G. Abstreiter , Appl. Phys. Lett. 70 (1997) p. 2431.

40. A.M. Agarwal , L. Liao , J.S. Foresi , M.R. Black , X. Duan , and L.C. Kimerling , J. Appl. Phys. 80 (1996) p. 6120.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th March 2017. This data will be updated every 24 hours.