Skip to main content
×
Home
    • Aa
    • Aa

Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands

Abstract
Abstract

Semiconductor quantum dots may be used in so-called third-generation solar cells that have the potential to greatly increase the photon conversion efficiency via two effects: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that use sub-bandgap photons to form separable electron–hole pairs. This is possible because quantization of energy levels in quantum dots produces the following effects: enhanced Auger processes and Coulomb coupling between charge carriers; elimination of the requirement to conserve crystal momentum; slowed hot electron–hole pair (exciton) cooling; multiple exciton generation; and formation of minibands (delocalized electronic states) in quantum dot arrays. For exciton multiplication, very high quantum yields of 300–700% for exciton formation in PbSe, PbS, PbTe, and CdSe quantum dots have been reported at photon energies about 4–8 times the HOMO–LUMO transition energy (quantum dot bandgap), respectively, indicating the formation of 3–7 excitons/photon, depending upon the photon energy. For intermediate-band solar cells, quantum dots are used to create the intermediate bands from the con fined electron states in the conduction band. By means of the intermediate band, it is possible to absorb below-bandgap energy photons. This is predicted to produce solar cells with enhanced photocurrent without voltage degradation.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.W. Shockley and H.J. Queisser , J. Appl. Phys. 32 (1961) p. 510.

2.A.J. Nozik , Annu. Rev. Phys. Chem. 52 (2001) p. 193.

3.R.T. Ross and A.J. Nozik , J. Appl. Phys. 53 (1982) p. 3813.

4.D.S. Boudreaux , F. Williams , and A.J. Nozik , J. Appl. Phys. 51 (1980) p. 2158.

5.P.T. Landsberg , H. Nussbaumer , and G. Willeke , J. Appl. Phys. 74 (1993) p. 1451.

6.S. Kolodinski , J.H. Werner , T. Wittchen , and H.J. Queisser , Appl. Phys. Lett. 63 (1993) p. 2405.

7.R.J. Ellingson , M.C. Beard , J.C. Johnson , P. Yu , O.I. Micic , A.J. Nozik , A. Shabaev , and A.L. Efros , Nano Lett. 5 (2005) p. 865.

8.M.C. Hanna and A.J. Nozik , J. Appl. Phys. 100 074510 (2006).

9.A. Luque and A. Martí , Phys. Rev. Lett. 78 (1997) p. 5014.

10.A. Luque and A. Martí , Prog. Photovoltaics: Res. Appl. 9 (2001) p. 73.

11.J. Bude and K. Hess , J. Appl. Phys. 72 (1992) p. 3554.

12.H.K. Jung , K. Taniguchi , and C. Hamaguchi , J. Appl. Phys. 79 (1996) p. 2473.

13.D. Harrison , R.A. Abram , and S. Brand , J. Appl. Phys. 85 (1999) p. 8186.

14.O. Christensen , J. Appl. Phys. 47 (1976) p. 690.

15.M. Wolf , R. Brendel , J.H. Werner , and H.J. Queisser , J. Appl. Phys. 83 (1998) p. 4213.

16.R. Schaller and V. Klimov , Phys. Rev. Lett. 92 186601 (2004).

17.J.E. Murphy , M.C. Beard , A.G. Norman , S.P. Ahrenkiel , J.C. Johnson , P. Yu , O.I. Micic , R.J. Ellingson , and A.J. Nozik , J. Am. Chem. Soc. 128 (2006) p. 3241.

18.A. Shabaev , Al. L. Efros , and A.J. Nozik , Nano Lett. 6 (2006) p. 2856.

19.R.D. Schaller , M. Sykora , J.M. Pietryga , and V.I. Klimov , Nano Lett. 6 (2006) p. 424.

20.R.D. Schaller , M.A. Petruska , and V.I. Klimov , Appl. Phys. Lett. 87 253102 (2005).

21.R.D. Schaller , V.M. Agranovich , and V.I. Klimov , Nature Phys. 1 (2005) p. 189.

22.A. Franceschetti , J.M. An , and A. Zunger , Nano Lett. 6 (2006) p. 2191.

23.A. Hagfeldt and M. Grätzel , Acc. Chem. Res. 33 (2000) p. 269.

24.J. Moser , P. Bonnote , and M. Grätzel , Coord. Chem. Rev. 171 (1998) p. 245.

25.M. Grätzel , Prog. Photovoltaics 8 (2000) p. 171.

26.A. Zaban , O.I. Micic , B.A. Gregg , and A.J. Nozik , Langmuir 14 (1998) p. 3153.

27.R. Vogel and H. Weller , J. Phys. Chem. 98 (1994) p. 3183.

28.H. Weller , Ber. Bunsen-Ges. Phys. Chem. 95 (1991) p. 1361.

29.D. Liu and P.V. Kamat , J. Phys. Chem. 97 (1993) p. 10769.

30.P. Hoyer and R. Könenkamp , Appl. Phys. Lett. 66 (1995) p. 349.

31.N.C. Greenham , X. Peng , and A.P. Alivisatos , Phys. Rev. B 54 (1996) p. 17628.

32.N.C. Greenham , X. Peng , and A.P. Alivisatos , “A CdSe Nanocrystal/MEH-PPV Polymer Composite Photovoltaic” in Future Generation Photovoltaic Technologies: First NREL Conf., edited by R. McConnell (AIP, 1997) p. 295.

33.W.U. Huynh , X. Peng , and P. Alivisatos , Adv. Mater. 11 (1999) p. 923.

34.A. Luque , A. Martí , and L. Cuadra , IEEE Trans. Electron Dev. 50 (2003) p. 447.

35.A. Luque , A. Martí , and L. Cuadra , Physica E 14 (2002) p. 107.

36.A. Luque , A. Martí , and L. Cuadra , IEEE Trans. Electron Dev. 48 (2001) p. 2118.

37.A. Luque , A. Martí , E. Antolín , and C. Tablero , Physica B 382 (2006) p. 320.

38.A. Martí , L. Cuadra , and A. Luque , in Proc. 28th IEEE Photovoltaics Specialists Conf. (IEEE, Piscataway, NJ, 2000) p. 940.

39.N.F. Mott , Rev. Mod. Phys. 40 (1968) p. 677.

42.K. Mukai and M. Sugawara , in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by M. Sugawara (Academic Press, San Diego, 1999) p. 209.

43.A. Martí , L. Cuadra , and A. Luque , IEEE Trans. Electron Dev. 48 (2001) p. 2394.

44.Y. Nakata , Y. Sugiyama , and M. Sugawara , in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by M. Sugawara (Academic Press, San Diego, 1999) p. 117.

45.A. Luque , A. Martí , N. López , E. Antolín , E. Cánovas , C. Stanley , C. Farmer , L.J. Caballero , L. Cuadra , and J.L. Balenzategui , Appl. Phys. Lett. 87 083505 (2005).

46.A. Luque , A. Martí , N. López , E. Antolín , E. Cánovas , C.R. Stanley , C. Farmer , and P. Díaz , J. Appl. Phys. 99 094503 (2006).

47.A. Luque , A. Martí , C. Stanley , N. López , L. Cuadra , D. Zhou , and A. McKee , J. Appl. Phys. 96 (2004) p. 903.

48.A.J. Nozik , Physica E 14 (2002) p. 115.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×