Skip to main content
×
Home

Electron flow and biofilms

  • Kenneth H. Nealson (a1) and Steven E. Finkel (a2)
Abstract
Abstract

Bacteria living in surface-attached biofilm communities must maintain electrochemical gradients to support basic cellular functions, including chemo-osmotic transport and adenosine triphosphate synthesis. Central to this is the maintenance of electron flow to terminal electron acceptors. These acceptors can be soluble inorganic and organic molecules, such as oxygen, nitrate, sulfate, dimethyl sulfoxide, or fumarate, or solid metal oxides, such as Fe(III) and Mn(IV) oxides. When electrons are transferred to a solid substrate, they may be (1) carried directly to the acceptor via outer membrane cytochromes, (2) carried by electron shuttle molecules, (3) transferred along conductive protein nanowires, or (4) conducted through other extracellular matrices. No matter what the electron acceptor is, in the laboratory, bacterial biofilms are frequently studied while growing on inert surfaces, incapable of electron transfer. However, in natural environments, as well as many industrial and biotechnology settings, biofilms grow on electrically active surfaces. In this review, we propose that the study of bacterial biofilms on redox-active surfaces is important both for the development of industrial processes, such as microbial fuel cells and wastewater treatment systems, as well as for our understanding of how these communities of microbes affect global nutrient cycling, other geobiological processes, and even human disease.

Copyright
References
Hide All
1.Nealson K.H., Rye R.R., Treatise on Geochemistry (Elsevier Pergammon, Amsterdam, 2003), Vol. 8, pp. 41.
2.White D.J., The Physiology and Biochemistry of Prokaryotes, 3rd Edition (Oxford University Press, New York, NY, 2007).
3.Stumm W., Morgan J.J., Aquatic Chemistry, 3rd Edition (Wiley-Interscience, New York, NY, 1996).
4.Madigan M.T., Martinko J.M., Brock Biology of Microorganisms, 11th Edition (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).
5.Aguilar C., Nealson K.H., Can. J. Fish. Aquat. Sci. 51, 185 (1994).
6.Dean W., Moore W.S., Nealson K.H., Chem. Geol. 34, 53 (1981).
7.Myers C.R., Nealson K.H., Science 240, 1319 (1988).
8.Myers C.R., Nealson K.H., J. Bacteriol. 172, 6232 (1990).
9.Lovley D.R., Phillips E.J., Appl. Environ. Microbiol. 54, 1472 (1988).
10.Lovley D.R., Giovannoni S.J., White D.C., Champine J.E., Phillips E.J., Gorby Y.A., Goodwin S., Arch. Microbiol. 159, 336 (1993).
11.Marsili E., Proc. Natl. Acad. Sci. U.S.A. 105, 3968 (1988).
12.von Canstein H., Ogawa J., Shimuzu S., Lloyd J.R., Appl. Environ. Microbiol. 74, 615 (2008).
13.Gorby Y.A., Yanina S., McLean J.S., Rosso K.M., Moyles D., Dohnalkova A., Beveridge T.J., Chang I.-S., Kim B.-H., Kim K.-S., Culley D.E., Reed S.B., Romine M.F., Saffarini D.A., Hill E.A., Shi L., Elias D.A., Kennedy D.W., Pinchuk G., Watanabe K., Ishii S., Logan B., Nealson K.H., Fredrickson J.K., Proc. Natl. Acad. Sci. U.S.A. 103, 11358 (1996).
14.El-Naggar M., Gorby Y.A., Xia W., Nealson K.H., Biophys. J. 95, 10 (2008).
15.El-Naggar M., Wanger G., Leung K.M., Yuzvinsky T.D., Southam G., Yang J., Lau W.W., Nealson K.H., Gorby Y.A., Proc. Natl. Acad. Sci. U.S.A. 107, 18127 (2010).
16.Reguera G., McCarthy K.D., Mehta T., Nicoll J.S., Tuominen M.T., Lovley D.R., Nature 435, 1098 (2005).
17.Reguera G., Nevin K.P., Nicoll J.S., Covalla S.F., Woodard T.L., Lovley D.R., Appl. Environ. Microbiol. 72, 7345 (2006).
18.Kato S., Nakamura R., Kai F., Watanabe K., Hashimoto K., Environ. Microbiol. 12, 3114 (2010).
19.Nielsen L.P., Risgaard-Petersen N., Fossing H., Christensen P.B., Sayama M., Nature 463, 1071 (2010).
20.Kim B.H., Biotechnol. Tech. 13, 475 (1999).
21.McLean J.S., Wange G., Gorby Y.A., Wainstein M., McQuaid J., Ishii S.I., Bretschger O., Beyenal H., Nealson K.H.. Environ. Sci. Technol. 44, 2721 (2010).
22.Rabaey K., Rodriguez J., Blackall L.L., Keller J., Gross P., Batstone D., Verstraete W., Nealson K.H., ISME J. 1, 9 (2007).
23.Rabaey K., Rozendal R.A., Nat. Rev. Microbiol. 8, 706 (2010).
24.Logan B.E., Regan J.M., Trends Microbiol. 14, 512 (2006).
25.Logan B.E., Nat. Rev. Microbiol. 7, 375 (2009).
26.Lovley D.R., Nat. Rev. Microbiol. 17, 327 (2006).
27.Lovley D.R., Curr. Opin. Biotechnol. 19, 564 (2008).
28.Beliaev A., Saffarini D., J. Bacteriol. 180, 6292 (1998).
29.Myers J.M., Muers C.R., Appl. Environ. Microbiol. 67, 260 (2001).
30.Bretschger O., Obraztsova A., Sturm C.A., Chang I.S., Gorby Y.A., Reed S.B., Culley D.E., Reardon C.L., Barua S., Romine M.F., Zhou J., Beliaev A.S., Bouhenni R., Saffarini D., Mansfeld F., Kim B.H., Fredrickson J.K., Nealson K.H., Appl. Environ. Microbiol. 73, 7003 (2007).
31.Hall-Stoodley L., Costerton J.W., Stoodley P., Nat. Rev. Microbiol. 2 (2), 95 (2004).
32.Kan J., Hsu L., Cheung A.C., Pirbazari M., Nealson K.H., Environ Sci. Technol. 45, 1139 (2011).
33.Thrash J.C., Coates J.D., Environ. Sci. Technol. 42, 3921 (2008).
34.Torres C.I., Krajmalnik-Brown R., Parameswaran P., Marcus A.K., Wanger G., Gorby Y.A., Rittmann B.E., Environ. Sci. Technol. 43, 9519 (2009).
35.Biffinger J.C., Pietron J., Bretschger O., Nadeau L.J., Johnson G.R., Williams C.C., Nealson K.H., Ringeisen B.R., Biosens. Bioelectron. 24, 906 (2008).
36.Hansen S.K., Rainey P.B., Haagensen J.A., Molin S., Nature 445, 533 (2007).
37.Boles B.R., Singh P.K., Proc. Natl. Acad. Sci. U.S.A. 105, 12503 (2008).
38.Kraigsley A.M., Finkel S.E., FEMS Microbiol. Lett. 293, 135 (2009).
39.Stumm W., Morgan J.J., Aquatic chemistry: Chemical equilibria and rates in natural waters. 3rd edition. (John Wiley & Sons, Inc. New York, 1996), p. 1022.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 196 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.