Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Jahnke, Justin P. Cornejo, Jose A. Sumner, James J. Schuler, Andrew J. Atanassov, Plamen and Ista, Linnea K. 2016. Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1. Biointerphases, Vol. 11, Issue. 1, p. 011003.


    Babauta, Jerome T. and Beyenal, Haluk 2015. Biofilms in Bioelectrochemical Systems.


    Zou, Long Qiao, Yan Wu, Xiao-Shuai Ma, Cai-Xia Li, Xin and Li, Chang Ming 2015. Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis. Journal of Power Sources, Vol. 276, p. 208.


    Flemming, Hans-Curt 2014. Ecological Biochemistry.


    Kumar, Aloke Karig, David Acharya, Rajesh Neethirajan, Suresh Mukherjee, Partha P. Retterer, Scott and Doktycz, Mitchel J. 2013. Microscale confinement features can affect biofilm formation. Microfluidics and Nanofluidics, Vol. 14, Issue. 5, p. 895.


    Ng, Chun Kiat Cai Tan, Tian Kou Song, Hao and Cao, Bin 2013. Reductive formation of palladium nanoparticles by Shewanella oneidensis: role of outer membrane cytochromes and hydrogenases. RSC Advances, Vol. 3, Issue. 44, p. 22498.


    Renslow, R. S. Babauta, J. T. Dohnalkova, A. C. Boyanov, M. I. Kemner, K. M. Majors, P. D. Fredrickson, J. K. and Beyenal, H. 2013. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms. Energy & Environmental Science, Vol. 6, Issue. 6, p. 1827.


    Tuson, Hannah H. and Weibel, Douglas B. 2013. Bacteria–surface interactions. Soft Matter, Vol. 9, Issue. 17, p. 4368.


    Wu, Chao Cheng, Yuan-Yuan Yin, Hao Song, Xiang-Ning Li, Wen-Wei Zhou, Xian-Xuan Zhao, Li-Ping Tian, Li-Jiao Han, Jun-Cheng and Yu, Han-Qing 2013. Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesin. Scientific Reports, Vol. 3,


    2013. Fundamentals of Biofilm Research, Second Edition.


    Babauta, Jerome Renslow, Ryan Lewandowski, Zbigniew and Beyenal, Haluk 2012. Electrochemically active biofilms: facts and fiction. A review. Biofouling, Vol. 28, Issue. 8, p. 789.


    Enning, Dennis Venzlaff, Hendrik Garrelfs, Julia Dinh, Hang T. Meyer, Volker Mayrhofer, Karl Hassel, Achim W. Stratmann, Martin and Widdel, Friedrich 2012. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology, Vol. 14, Issue. 7, p. 1772.


    Kumar, Amit Katuri, Krishna Lens, Piet and Leech, Dónal 2012. Does bioelectrochemical cell configuration and anode potential affect biofilm response?. Biochemical Society Transactions, Vol. 40, Issue. 6, p. 1308.


    Patil, Sunil A. Hägerhäll, Cecilia and Gorton, Lo 2012. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews, Vol. 4, Issue. 2-4, p. 159.


    Ruminski, Anne M Bardhan, Rizia Brand, Alyssa and Urban, Jeffrey J 2011. Future prospects for hydrogen storage in designer nanocomposites. Biofuels, Vol. 2, Issue. 6, p. 591.


    ×

Electron flow and biofilms

  • Kenneth H. Nealson (a1) and Steven E. Finkel (a2)
  • DOI: http://dx.doi.org/10.1557/mrs.2011.69
  • Published online: 01 May 2011
Abstract
Abstract

Bacteria living in surface-attached biofilm communities must maintain electrochemical gradients to support basic cellular functions, including chemo-osmotic transport and adenosine triphosphate synthesis. Central to this is the maintenance of electron flow to terminal electron acceptors. These acceptors can be soluble inorganic and organic molecules, such as oxygen, nitrate, sulfate, dimethyl sulfoxide, or fumarate, or solid metal oxides, such as Fe(III) and Mn(IV) oxides. When electrons are transferred to a solid substrate, they may be (1) carried directly to the acceptor via outer membrane cytochromes, (2) carried by electron shuttle molecules, (3) transferred along conductive protein nanowires, or (4) conducted through other extracellular matrices. No matter what the electron acceptor is, in the laboratory, bacterial biofilms are frequently studied while growing on inert surfaces, incapable of electron transfer. However, in natural environments, as well as many industrial and biotechnology settings, biofilms grow on electrically active surfaces. In this review, we propose that the study of bacterial biofilms on redox-active surfaces is important both for the development of industrial processes, such as microbial fuel cells and wastewater treatment systems, as well as for our understanding of how these communities of microbes affect global nutrient cycling, other geobiological processes, and even human disease.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

5.C. Aguilar , K.H. Nealson , Can. J. Fish. Aquat. Sci. 51, 185 (1994).

6.W. Dean , W.S. Moore , K.H. Nealson , Chem. Geol. 34, 53 (1981).

7.C.R. Myers , K.H. Nealson , Science 240, 1319 (1988).

10.D.R. Lovley , S.J. Giovannoni , D.C. White , J.E. Champine , E.J. Phillips , Y.A. Gorby , S. Goodwin , Arch. Microbiol. 159, 336 (1993).

11.E. Marsili , Proc. Natl. Acad. Sci. U.S.A. 105, 3968 (1988).

12.H. von Canstein , J. Ogawa , S. Shimuzu , J.R. Lloyd , Appl. Environ. Microbiol. 74, 615 (2008).

13.Y.A. Gorby , S. Yanina , J.S. McLean , K.M. Rosso , D. Moyles , A. Dohnalkova , T.J. Beveridge , I.-S. Chang , B.-H. Kim , K.-S. Kim , D.E. Culley , S.B. Reed , M.F. Romine , D.A. Saffarini , E.A. Hill , L. Shi , D.A. Elias , D.W. Kennedy , G. Pinchuk , K. Watanabe , S. Ishii , B. Logan , K.H. Nealson , J.K. Fredrickson , Proc. Natl. Acad. Sci. U.S.A. 103, 11358 (1996).

14.M. El-Naggar , Y.A. Gorby , W. Xia , K.H. Nealson , Biophys. J. 95, 10 (2008).

15.M. El-Naggar , G. Wanger , K.M. Leung , T.D. Yuzvinsky , G. Southam , J. Yang , W.W. Lau , K.H. Nealson , Y.A. Gorby , Proc. Natl. Acad. Sci. U.S.A. 107, 18127 (2010).

16.G. Reguera , K.D. McCarthy , T. Mehta , J.S. Nicoll , M.T. Tuominen , D.R. Lovley , Nature 435, 1098 (2005).

17.G. Reguera , K.P. Nevin , J.S. Nicoll , S.F. Covalla , T.L. Woodard , D.R. Lovley , Appl. Environ. Microbiol. 72, 7345 (2006).

18.S. Kato , R. Nakamura , F. Kai , K. Watanabe , K. Hashimoto , Environ. Microbiol. 12, 3114 (2010).

19.L.P. Nielsen , N. Risgaard-Petersen , H. Fossing , P.B. Christensen , M. Sayama , Nature 463, 1071 (2010).

20.B.H. Kim , Biotechnol. Tech. 13, 475 (1999).

21.J.S. McLean , G. Wange , Y.A. Gorby , M. Wainstein , J. McQuaid , S.I. Ishii , O. Bretschger , H. Beyenal , K.H. Nealson . Environ. Sci. Technol. 44, 2721 (2010).

22.K. Rabaey , J. Rodriguez , L.L. Blackall , J. Keller , P. Gross , D. Batstone , W. Verstraete , K.H. Nealson , ISME J. 1, 9 (2007).

23.K. Rabaey , R.A. Rozendal , Nat. Rev. Microbiol. 8, 706 (2010).

24.B.E. Logan , J.M. Regan , Trends Microbiol. 14, 512 (2006).

25.B.E. Logan , Nat. Rev. Microbiol. 7, 375 (2009).

27.D.R. Lovley , Curr. Opin. Biotechnol. 19, 564 (2008).

29.J.M. Myers , C.R. Muers , Appl. Environ. Microbiol. 67, 260 (2001).

30.O. Bretschger , A. Obraztsova , C.A. Sturm , I.S. Chang , Y.A. Gorby , S.B. Reed , D.E. Culley , C.L. Reardon , S. Barua , M.F. Romine , J. Zhou , A.S. Beliaev , R. Bouhenni , D. Saffarini , F. Mansfeld , B.H. Kim , J.K. Fredrickson , K.H. Nealson , Appl. Environ. Microbiol. 73, 7003 (2007).

31.L. Hall-Stoodley , J.W. Costerton , P. Stoodley , Nat. Rev. Microbiol. 2 (2), 95 (2004).

32.J. Kan , L. Hsu , A.C. Cheung , M. Pirbazari , K.H. Nealson , Environ Sci. Technol. 45, 1139 (2011).

33.J.C. Thrash , J.D. Coates , Environ. Sci. Technol. 42, 3921 (2008).

34.C.I. Torres , R. Krajmalnik-Brown , P. Parameswaran , A.K. Marcus , G. Wanger , Y.A. Gorby , B.E. Rittmann , Environ. Sci. Technol. 43, 9519 (2009).

35.J.C. Biffinger , J. Pietron , O. Bretschger , L.J. Nadeau , G.R. Johnson , C.C. Williams , K.H. Nealson , B.R. Ringeisen , Biosens. Bioelectron. 24, 906 (2008).

36.S.K. Hansen , P.B. Rainey , J.A. Haagensen , S. Molin , Nature 445, 533 (2007).

37.B.R. Boles , P.K. Singh , Proc. Natl. Acad. Sci. U.S.A. 105, 12503 (2008).

38.A.M. Kraigsley , S.E. Finkel , FEMS Microbiol. Lett. 293, 135 (2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: