Skip to main content Accessibility help
×
Home

Elevated-temperature creep of high-entropy alloys via nanoindentation

  • P.H. Lin (a1), H.S. Chou (a2), J.C. Huang (a3), W.S. Chuang (a4), J.S.C. Jang (a5) and T.G. Nieh (a6)...

Abstract

High-entropy alloys (HEAs) have been the focus of wide-ranging studies for their applications as next-generation structural materials. For high-temperature industrial applications, creep behavior of structural materials is critical. In addition to high-temperature tensile, compressive, and notched tests, elevated-temperature nanoindentation is a relatively new testing method for HEAs. With the high accuracy of depth-sensing technology and a stable temperature-controlling stage, elevated-temperature time-dependent mechanical behavior of HEAs can be investigated, especially at localized regions without the limitations of the standard specimen size used for traditional creep testing. Also, the creep response from each grain in polycrystalline samples with various crystalline orientations can be explored in detail. This article overviews current progress in studying creep behavior in HEAs via nanoindentation technology.

Copyright

References

Hide All
1.Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsau, C.-H., Chang, S.-Y., Adv. Eng. Mater. 6, 299 (2004).
2.Otto, F., Yang, Y., Bei, H., George, E.P., Acta Mater . 61, 2628 (2013).
3.Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., Tikhonovsky, M.A., Mater. Lett. 142, 153 (2015).
4.Tsao, T.-K., Yeh, A.-C., Kuo, C.-M., Kakehi, K., Murakami, H., Yeh, J.-W., Jian, S.-R., Sci. Rep. 7, 12658 (2017).
5.Fujieda, T., Shiratori, H., Kuwabara, K., Hirota, M., Kato, T., Yamanaka, K., Koizumi, Y., Chiba, A., Watanabe, S., Mater. Lett. 189, 148 (2017).
6.Xiao, D.H., Zhou, P.F., Wu, W.Q., Diao, H.Y., Gao, M.C., Song, M., Liaw, P.K., Mater. Des. 116, 438 (2017).
7.Qiu, Y., Thomas, S., Gibson, M.A., Fraser, H.L., Birbilis, N., npj Mater. Degrad. 1, 15 (2017).
8.Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L.M., Djurabekova, F., Weber, W.J., Zhang, Y., Phys. Rev. Lett. 116, 135504 (2016).
9.Chuang, M.-H., Tsai, M.-H., Wang, W.-R., Lin, S.-J., Yeh, J.-W., Acta Mater . 59, 6308 (2011).
10.Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K., Intermetallics 18, 1758 (2010).
11.Wu, Z., Bei, H., Otto, F., Pharr, G.M., George, E.P., Intermetallics 46, 131 (2014).
12.Yao, M.J., Pradeep, K.G., Tasan, C.C., Raabe, D., Scr. Mater. 72–73, 5 (2014).
13.Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., Hohenwarter, A., Acta Mater . 96, 258 (2015).
14.Miracle, B.D., Miller, D.J., Senkov, N.O., Woodward, C., Uchic, D.M., Tiley, J., Entropy 16 (2014).
15.Praveen, S., Kim, H.S., Adv. Eng. Mater. 20, 1700645 (2018).
16.Modlinski, R., Witvrouw, A., Ratchev, P., Puers, R., den Toonder, J.M.J., De Wolf, I., Microelectron. Eng. 76, 272 (2004).
17.Chavoshi, S.Z., Xu, S., MRS Commun . 8, 15 (2018).
18.Tsai, M.T., Huang, J.C., Lin, P.H., Liu, T.Y., Liao, Y.C., Jang, J.S.C., Song, S.X., Nieh, T.G., Intermetallics 103, 88 (2018).
19.Ma, Y., Peng, G.J., Wen, D.H., Zhang, T.H., Mater. Sci. Eng. A 621, 111 (2015).
20.Lee, D.-H., Seok, M.-Y., Zhao, Y., Choi, I.-C., He, J., Lu, Z., Suh, J.-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., Jang, J.-i., Acta Mater . 109, 314 (2016).
21.Wang, Z., Guo, S., Wang, Q., Liu, Z., Wang, J., Yang, Y., Liu, C.T., Intermetallics 53, 183 (2014).
22.Lee, D.-H., Choi, I.-C., Yang, G., Lu, Z., Kawasaki, M., Ramamurty, U., Schwaiger, R., Jang, J.-i., Scr. Mater. 156, 129 (2018).
23.Jiao, Z.M., Wang, Z.H., Wu, R.F., Qiao, J.W., Appl. Phys. A 122, 794 (2016).
24.Ma, Y., Feng, Y.H., Debela, T.T., Peng, G.J., Zhang, T.H., Int. J. Refract. Metals Hard Mater. 54, 395 (2016).
25.Li, W.B., Henshall, J.L., Hooper, R.M., Easterling, K.E., Acta Metall. Mater. 39, 3099 (1991).
26.He, L.Z., Zheng, Q., Sun, X.F., Guan, H.R., Hu, Z.Q., Tieu, A.K., Lu, C., Zhu, H.T., Metall. Mater. Trans. A 36, 2385 (2005).
27.Cao, T., Shang, J., Zhao, J., Cheng, C., Wang, R., Wang, H., Mater. Lett. 164, 344 (2016).
28.Tian, S., Su, Y., Qian, B., Yu, X., Liang, F., Li, A., Mater. Des. 37, 236 (2012).
29.Knezevic, V., Schneider, A., Landier, C., Procedia Eng . 55, 240 (2013).
30.Kim, W.J., Jeong, H.T., Park, H.K., Park, K., Na, T.W., Choi, E., J. Alloys Compd. 802, 152 (2019).
31.Friedel, J., Dislocations (Pergamon Press, Oxford, UK, 1964).
32.Jeong, H.T., Park, H.K., Park, K., Na, T.W., Kim, W.J., Mater. Sci. Eng. A 756, 528 (2019).
33.Bhattacharyya, A., Singh, G., Eswar Prasad, K., Narasimhan, R., Ramamurty, U., Mater. Sci. Eng. A 625, 245 (2015).
34.Woo, C.H., Huang, H., Ngan, A.H.W., Yu, T., CMES Comp. Model. Eng. Sci. 6, 105 (2004).
35.Zou, Y., Wheeler, J.M., Ma, H., Okle, P., Spolenak, R., Nano Lett. 17, 1569 (2017).
36.Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., Liu, R.P., Mater. Sci. Eng. A 655, 283 (2016).
37.Ghosh, R.N., Bull. Mater. Sci. 17, 1341 (1994).
38.Wen, Z., Zhang, D., Li, S., Yue, Z., Gao, J., J. Alloys Compd. 692, 301 (2017).
39.Hu, T.Y., Zheng, B.L., Hu, M.Y., He, P.F., Yue, Z.F., Mater. Sci. Technol. 31, 325 (2015).
40.Wu, Z., Gao, Y.F., Bei, H., Scr. Mater. 109, 108 (2015).
41.Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Kuksgausen, I.V., Karaman, I., Mater. Sci. Eng. A 705, 176 (2017).
42.He, J.Y., Zhu, C., Zhou, D.Q., Liu, W.H., Nieh, T.G., Lu, Z.P., Intermetallics 55, 9 (2014).

Elevated-temperature creep of high-entropy alloys via nanoindentation

  • P.H. Lin (a1), H.S. Chou (a2), J.C. Huang (a3), W.S. Chuang (a4), J.S.C. Jang (a5) and T.G. Nieh (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed