Skip to main content Accessibility help
×
Home

Fusion materials modeling: Challenges and opportunities

  • B.D. Wirth (a1), K. Nordlund (a2), D.G. Whyte (a3) and D. Xu (a4)

Abstract

The plasma facing components, first wall, and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time-varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. Fortunately, recent innovations in computational modeling techniques, increasingly powerful high-performance and massively parallel computing platforms, and improved analytical experimental characterization tools provide the means to develop self-consistent, experimentally validated models of materials performance and degradation in the fusion energy environment. This article will describe the challenges associated with modeling the performance of plasma facing component and structural materials in a fusion materials environment, the opportunities to utilize high-performance computing, and two examples of recent progress.

Copyright

References

Hide All
2.Wesson, J., in Oxford Engineering Science Series 48, 2nd Edition (Clarendon Press, Oxford, 1997).
3.Roth, J., Garcia-Rosales, C., Nucl. Fusion 36, 1647 (1996).
4.Roth, J., Garcia-Rosales, C., Nucl. Fusion 37, 897 (1997).
5.Bloom, E.E., J. Nucl. Mater. 258263, 7 (1998).
6.Bloom, E.E., Ghoniem, N., Jones, R., Kurtz, R., Odette, G.R., Rowecliffe, A., Smith, D., Wiffen, F.W., “Advanced Materials Program,” appendix D of the VLT roadmap (1999).
8.Zinkle, S.J., Ghoneim, N.M., Fusion Eng. Des. 5152, 55 (2000).
9.Zinkle, S.J., Phys. Plasmas 12, 058101 (2005).
10.Muroga, T., Gasparotto, M., Zinkle, S.J., Fusion Eng. Des. 6162, 13 (2002).
11.Odette, G.R., Wirth, B.D., Bacon, D.J., Ghoniem, N.M., MRS Bull. 26, 176 (2001).
12.Yamashina, T., Hino, T., Appl. Surf. Sci. 48/49, 483 (1991).
13.Horn, A., Schenk, A., Biener, J., Winter, B., Lutterloh, C., Wittmann, M., Kuppers, J., Chem. Phys. Lett. 231, 193 (1994).
14.Kuppers, J., Surf. Sci. Rep. 22, 249 (1995).
15.de Juan Pardo, E., Balden, M., Cieciwa, B., Garcia-Rosales, C., Roth, J., Phys. Scr. T. 111, 62 (2004).
16.Salonen, E., Nordlund, K., Keinonen, J., Wu, C.H., Europhys. Lett. 52, 504 (2000).
17.Salonen, E., Nordlund, K., Keinonen, J., Wu, C.H., Phys. Rev. B 63, 195415 (2001).
18.Krasheninnikov, A.V., Nordlund, K., Salonen, E., Keinonen, J., Wu, C.H., Comput. Mater. Sci. 25, 427 (2002).
19.Marian, J., Zepeda-Ruiz, L.A., Couto, N., Bringa, E.M., Gilmer, G.H., Stangeby, P.C., Rognlien, T.D., J. Appl. Phys. 101, 044506 (2007).
20.Krstic, P.S., Reinhold, C.O., Stuart, S., Europhys. Lett. 77 (2007).
21.Maya, P.N., von Toussaint, U., Hopf, C., New J. Phys. 10, 023002 (2008).
22.Alman, D.A., Ruzic, D.N., J. Nucl. Mater. 313316, 182 (2003).
23.Salonen, E., Phys. Scr. T. 111, 133 (2004).
24.Krstic, P.S., Reinhold, C.O., Stuart, S., New J. Phys. 9, 209 (2007).
25.Nordlund, K., Salonen, E., Krasheninnikov, A.V., Keinonen, J., Pure Appl.Chem. 78, 1203 (2006).
26.Traskelin, P., Juslin, N., Erhart, P., Nordlund, K., Phys. Rev. B 75, 174113 (2007).
27.Johnson, R.E., Schou, J., Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 43, 403 (1993).
28.Bjorkas, C., Vörtler, K., Nordlund, K., Nishijima, D., Doerner, R., New J. Phys. 11, 123017 (2009).
29.Jacob, W., Thin Solid Films 326, 1 (1998).
30.Kurki-Suonio, T., Hynönen, V., Ahlgren, T., Nordlund, K., Sugiyama, K., Dux, R., Europhys. Lett. 78, 65002 (2007).
31.Frauenfelder, R., J. Vac. Sci. Technol. 6, 388 (1969).
32.Ahlgren, T., Heinola, K., Vainonen-Ahlgren, E., Likonen, J., Keinonen, J., Nucl. Instrum. Methods Phys. Res., Sect. B 249, 436 (2006).
33.Yamamoto, T., Odette, G.R., Miao, P., Hoelzer, D.T., Bentley, J., Hashimoto, N., Tanigawa, H., Kurtz, R.J., J. Nucl. Mater. 367370, 399 (2007).
34.Trinkaus, H., J. Nuclear Materials 118, 39 (1983).
35.Ullmaier, H., Nuclear Fusion 24 1039 (1984).
36.Xu, D., Wirth, B.D., J. Nucl. Mater. 403, 184 (2010).
37.Fu, C.C., Willaime, F., Phys. Rev. B 72, 064117 (2005).
38.Seletskaia, T., Osetsky, Y.N., Stoller, R.E., Stocks, G.M., J. Nucl. Mater. 351, 109 (2006).
39.Morishita, K., Sugano, R., Wirth, B.D., de la Rubia, T.D., Nucl. Instrum. Methods Phys. Res., Sect. B 202, 76 (2003).
40.Ortiz, C.J., Caturla, M.J., Fu, C.C., Willaime, F., Phys. Rev. B 75, 100102 (2007).

Fusion materials modeling: Challenges and opportunities

  • B.D. Wirth (a1), K. Nordlund (a2), D.G. Whyte (a3) and D. Xu (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed