Skip to main content Accessibility help

The Mechanics and Physics of Defect Nucleation

  • Ju Li


The following article is based on the Outstanding Young Investigator Award presentation given by Ju Li on April 19, 2006, at the Materials Research Society Spring Meeting in San Francisco. Li received the award “for his innovative work on the atomistic and first-principles modeling of nanoindentation and ideal strength in revealing the genesis of materials deformation and fracture.”

Defect nucleation plays a critical role in the mechanical behavior of materials, especially if the system size is reduced to the submicron scale. At the most fundamental level, defect nucleation is controlled by bond breaking and reformation events, driven typically by mechanical strain and electronegativity differences. For these processes, atomistic and first-principles calculations are uniquely suited to provide an unprecedented level of mechanistic detail. Several connecting threads incorporating notions in continuum mechanics and explicit knowledge of the interatomic energy landscape can be identified, such as homogeneous versus heterogeneous nucleation, cleavage versus shear-faulting tendencies, chemomechanical coupling, and the fact that defects are singularities at the continuum level but regularized at the atomic scale. Examples are chosen from nano-indentation, crack-tip processes, and grain-boundary processes. In addition to the capacity of simulations to identify candidate mechanisms, the computed athermal strength, activation energy, and activation volume can be compared quantitatively with experiments to define the fundamental properties of defects in solids.



Hide All
1.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D., Science 305 (2004) p. 986.
2.Greer, J.R., Oliver, W.C., and Nix, W.D., Acta Mater. 53 (2005) p. 1821.
3.Volkert, C.A. and Lilleodden, E.T., Philos. Mag. 86 (2006) p. 5567.
4.Kohn, W., Becke, A.D., and Parr, R.G., J. Phys. Chem. 100 (1996) p. 12974.
5.Ogata, S., Li, J., Hirosaki, N., Shibutani, Y., and Yip, S., Phys. Rev. B 70 104104 (2004).
6.Dmitriev, S.V., Kitamura, T., Li, J., Umeno, Y., Yashiro, K., and Yoshikawa, N., Acta Mater. 53 (2005) p. 1215.
7.Umeno, Y., Kushima, A., Kitamura, T., Gumbsch, P., and Li, J., Phys. Rev. B 72 165431 (2005).
8.Ogata, S., Li, J., and Yip, S., Science 298 (2002) p. 807.
9.Daw, M.S. and Baskes, M.I., Phys. Rev. B 29 (1984) p. 6443.
10.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., and Satcher, J.H., J. Appl. Phys. 97 024301 (2005).
11.Volkert, C.A., Lilleodden, E.T., Kramer, D., and Weissmuller, J., Appl. Phys. Lett. 89 061920 (2006).
12.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 (1992) p. 1564.
13.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E., and Kohlstedt, D.L., Acta Metall. Mater. 43 (1995) p. 1569.
14.Gouldstone, A., Koh, H.J., Zeng, K.Y., Giannakopoulos, A.E., and Suresh, S., Acta Mater. 48 (2000) p. 2277.
15.Minor, A.M., Asif, S.A.S., Shan, Z., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., and Warren, O.L., Nature Mater. 5 (2006) p. 697.
16.Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., and Shen, Y.-L., Acta Mater. (2007) overview no. 142.
17.Gouldstone, A., Van Vliet, K.J., and Suresh, S., Nature 411 (2001) p. 656.
18.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., and Wyrobek, J.T., Acta Mater. 44 (1996) p. 3585.
19.Espinosa, H.D., Berbenni, S., Panico, M., and Schwarz, K.W., Proc. Natl. Acad. Sci. USA 102 (2005) p. 16933.
20.Greer, J.R. and Nix, W.D., Phys. Rev. B 73 245410 (2006).
21.Sieradzki, K., Rinaldi, A., Friesen, C., and Peraltai, P., Acta Mater. 54 (2006) p. 4533.
22.Yip, S., Nature 391 (1998) p. 532.
23.Mason, J.K., Lund, A.C., and Schuh, C.A., Phys. Rev. B 73 054102 (2006).
24.Pokluda, J., Cerny, M., Sandera, P., and Sob, M., J. Comput. Aided Mater. Des. 11 (2004) p. 1.
25.Wang, W. and Lu, K., Philos. Mag. 86 (2006) p. 5309.
26.Wo, P.C., Zuo, L., and Ngan, A.H.W., J. Mater. Res. 20 (2005) p. 489.
27.Asenjo, A., Jaafar, M., Carrasco, E., and Rojo, J.M., Phys. Rev. B 73 075431 (2006).
28.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H., and Leipner, H.S., Phys. Rev. B 67 172101 (2003).
29.Schuh, C.A. and Lund, A.C., J. Mater. Res. 19 (2004) p. 2152.
30.Bei, H., George, E.P., Hay, J.L., and Pharr, G.M., Phys. Rev. Lett. 95 045501 (2005).
31.Leipner, H.S., Lorenz, D., Zeckzer, A., and Grau, P., Phys. Status Solidi A 183 (2001) p. R4.
32.Kocks, U.F., Argon, A.S., and Ashby, M.F., Prog. Mater. Sci. 19 (1975) p. 1.
33.Kumar, K.S., Van Swygenhoven, H., and Suresh, S., Acta Mater. 51 (2003) p. 5743.
34.Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K., Science 304 (2004) p. 422.
35.Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., and Suresh, S., Acta Mater. 53 (2005) p. 2169.
36.Asaro, R.J. and Suresh, S., Acta Mater. 53 (2005) p. 3369.
37.Zhu, T., Li, J., Samanta, A., Kim, H.G., and Suresh, S., Proc. Natl. Acad. Sci. USA (2007) in press, pnas.0611097104.
38.Wang, Y.M., Chen, M.W., Zhou, F.H., and Ma, E., Nature 419 (2002) p. 912.
39.Zhu, Y.T.T. and Liao, X.Z., Nature Mater. 3 (2004) p. 351.
40.Johnson, W.L., MRS Bulletin 24 (10) (1999) p. 42.
41.Shimizu, F., Ogata, S., and Li, J., Acta Mater. 54 (2006) p. 4293.
42.Bringa, E.M., Caro, A., Wang, Y.M., Victoria, M., McNaney, J.M., Remington, B.A., Smith, R.F., Torralva, B.R., and Van Swygenhoven, H., Science 309 (2005) p. 1838.
43.Thompson, S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Ma, Z., McIntyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., and El-Mansy, Y., IEEE Electron Dev. Lett. 25 (2004) p. 191.
44.Chidambaram, P.R., Bowen, C., Chakravarthi, S., Machala, C., and Wise, R., IEEE Trans. Electron Dev. 53 (2006) p. 944.
45.Zhang, Z., Yoon, J., and Suo, Z.G., Appl. Phys. Lett. 89 261912 (2006).
46.Dumitrica, T., Hua, M., and Yakobson, B.I., Proc. Natl. Acad. Sci. USA 103 (2006) p. 6105.
47.Zhang, S.L., Mielke, S.L., Khare, R., Troya, D., Ruoff, R.S., Schatz, G.C., and Belytschko, T., Phys. Rev. B 71 115403 (2005).
48.Huang, J.Y., Chen, S., Ren, Z.F., Wang, Z.Q., Wang, D.Z., Vaziri, M., Suo, Z., Chen, G., and Dresselhaus, M.S., Phys. Rev. Lett. 97 075501 (2006).
49.Mori, H., Ogata, S., Li, J., Akita, S., and Nakayama, Y., Phys. Rev. B 74 165418 (2006).
50.Rice, J.R. and Thomson, R., Philos. Mag. 29 (1974) p. 73.
51.Rice, J.R. and Beltz, G.E., J. Mech. Phys. Solids 42 (1994) p. 333.
52.Xu, G., Argon, A.S., and Oritz, M., Philos. Mag. A 75 (1997) p. 341.
53.Argon, A.S., J. Eng. Mater. Technol.-Trans. ASME 123 (2001) p. 1.
54.Zhu, T., Li, J., and Yip, S., Phys. Rev. Lett. 93 025503 (2004).
55.Vegge, T., Rasmussen, T., Leffers, T., Pedersen, O.B., and Jacobsen, K.W., Phys. Rev. Lett. 85 (2000) p. 3866.
56.Bulatov, V.V., Yip, S., and Argon, A.S., Philos. Mag. A 72 (1995) p. 453.
57.Cai, W., Bulatov, V.V., Justo, J.F., Argon, A.S., and Yip, S., Phys. Rev. Lett. 84 (2000) p. 3346.
58.Wen, M. and Ngan, A.H.W., Acta Mater. 48 (2000) p. 4255.
59.Lawn, B.R., Roach, D.H., and Thomson, R.M., J. Mater. Sci. 22 (1987) p. 4036.
60.Zhu, T., Li, J., and Yip, S., Phys. Rev. Lett. 93 205504 (2004).
61.Cahn, J.W. and Nabarro, F.R.N., Philos. Mag. A 81 (2001) p. 1409.
62.Cottrell, A.H., Philos. Mag. Lett. 82 (2002) p. 65.
63.Rice, J.R., J. Mech. Phys. Solids 40 (1992) p. 239.
64.Li, J., Ngan, A.H.W., and Gumbsch, P., Acta Mater. 51 (2003) p. 5711.
65.Henkelman, G. and Jonsson, H., J. Chem. Phys. 113 (2000) p. 9978.
66.Zhu, T., Li, J., Lin, X., and Yip, S., J. Mech. Phys. Solids 53 (2005) p. 1597.
67.Tadmor, E.B. and Hai, S., J. Mech. Phys. Solids 51 (2003) p. 765.
68.Vitek, V., Scripta Metall. 4 (1970) p. 725.
69.van de Walle, A., Asta, M., and Ceder, G., Calphad 26 (2002) p. 539.
70.Li, J. and Yip, S., CMES-Comp. Model. Eng. Sci. 3 (2002) p. 219.
71.Kitamura, T., Umeno, Y., and Fushino, R., Mater. Sci. Eng. A 379 (2004) p. 229.
72.Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S., Nature 418 (2002) p. 307.
73.Binggeli, N., Keskar, N.R., and Chelikowsky, J.R., Phys. Rev. B 49 (1994) p. 3075.
74.Cahn, J.W., Acta Metall. 9 (1961) p. 795.
75.Clatterbuck, D.M., Krenn, C.R., Cohen, M.L., and Morris, J.W., Phys. Rev. Lett. 91 135501 (2003).
76.Ogata, S., Li, J., and Yip, S., Phys. Rev. B 71 224102 (2005).
77.Khachaturyan, A.G., Theory of Structural Transformation in Solids (Wiley, New York, 1983).
78.Peierls, R., Proc. Phys. Soc. London 52 (1940) p. 34.
79.Bulatov, V.V. and Kaxiras, E., Phys. Rev. Lett. 78 (1997) p. 4221.
80.Cai, W., Bulatov, V.V., Chang, J.P., Li, J., and Yip, S., Phys. Rev. Lett. 86 (2001) p. 5727.
81.Li, J., Wang, C.Z., Chang, J.P., Cai, W., Bulatov, V.V., Ho, K.M., and Yip, S., Phys. Rev. B 70 104113 (2004).
82.Zhu, T., Li, J., Van Vliet, K.J., Ogata, S., Yip, S., and Suresh, S., J. Mech. Phys. Solids 52 (2004) p. 691.
83.Hayes, R.L., Fago, M., Ortiz, M., and Carter, E.A., Multiscale Model. Simul. 4 (2005) p. 359.
84.Van Vliet, K.J., Li, J., Zhu, T., Yip, S., and Suresh, S., Phys. Rev. B 67 104105 (2003).
85.Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Nature 440 (2006) p. 319.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed