Skip to main content Accessibility help

Scaling computation with silicon photonics

  • Lionel C. Kimerling (a1), Dim-Lee Kwong (a2) and Kazumi Wada (a3)


Fundamental latency and energy limitations are driving major changes in communication and computation hardware. Parallel multicore and multiprocessor architectures are emerging as highly interconnected, communication-centric computation tools that at high node count will approach neural network connectivity and complexity. Monolithically integrated silicon photonics with electronics offers a promising platform for scaling functionality with high volume manufacturing and short design cycle times. The system parameters for this emerging “design for function” paradigm are cost, energy, and bandwidth density. The platform has been built on transmission of a λ ≈ 1550 nm photon wavelength; Si, Ge, Si3N4, and SiO2 materials; and standard complementary metal oxide semiconductor foundry processing. Dimensional shrink is achieved through strong signal confinement in high refractive index contrast material composites. Precision pattern transfer has enabled both photonic interconnect and signal processing functionality. New materials, process integration, and packaging are the keys to success.



Hide All
1.The Microphotonics Center at Massachusetts Institute of Technology, “Communications Technology Roadmap, CTR I (2005), CTR II (2009), CTR III Scaling and Energy (2010); Scaling Copper (2011); Short Reach Optical Interconnection (2013);”
2.Agarwal, A., IEEE Trans. Parallel Distrib. Syst. 2, 4 (October 1991).
3.Kurian, G., Miller, J.E., Psota, J., Eastep, J., Liu, J., Michel, J., Kimerling, L.C., Agarwal, A., Proc. Parallel Architectures and Compilation Techniques, PACT’10, 477 (2010).
4.Kurian, G., Chen, S., Chen, C.H.O., Miller, J.E., Michel, J., Lan, W., Antoniadis, D.A., Li-Shiuan, P., Kimerling, L., Stojanovic, V., Agarwal, A., Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, (2012), pp. 11171130.
5.Lee, K.K., Lim, D.R., Agarwal, A., Wada, K., Kimerling, L.C., Mater. Res. Soc. Symp. Proc. 637, K. Wada, T.F. Krauss, P. Wiltzius, K. Asakawa, E.L. Thomas, Eds. (Materials Research Society, Warrendale, PA, 2001), p. E3.4.1.
6.Hamann, H.F., Weger, A., Lacey, J.A., Hu, Z., Bose, P., Cohen, E., Wakil, J., IEEE J. Solid-State Circuits 42, 56 (2007).
7.Raghunathan, V., Ye, W.N., Hu, J.J., Izuhara, T., Michel, J., Kimerling, L.C., Opt. Express 18, 17631 (2010).
8.Kimerling, L.C., Michel, J., ECS Trans. 41 (7), 3 (2011).
9.Soref, R.A., Lorenzo, J.P., IEEE J. Quantum Electron. 22, 873 (1986).
10.Van Campenhout, J., Rojo-Romeo, P., Van Thourhout, D., Seassal, C., Regreny, P., Di Cioccio, L., Fedeli, J.M., Lagahe, C., Baets, R., Opt. Express 15, 6744 (2007).
11.Park, H., Fang, A.W., Kodama, S., Bowers, J.E., Opt. Express 13, 9460 (2005).
12.Klunder, D.J.W., Tan, F.S., van der Veen, T., Bulthuis, H.F., Sengo, G., Docter, B., Hokstra, H.J.W.M., Driessen, A., J. Lightwave Technol. 21, 4 (2003).
13.Grillanda, S., Raghunathan, V., Singh, V., Morichetti, F., Michel, J., Kimerling, L., Melloni, A., Agarwal, A., Opt. Lett. 38, 24 (2013).
14.Liu, J., Beals, M., Pomerene, A., Bernardis, S., Sun, R., Cheng, J., Kimerling, L.C., Michel, J., Nat. Photonics 2, 7 (2008).
15.Bi, L., Hu, J., Jiang, P., Kim, D.H., Dionne, G.F., Kimerling, L.C., Ross, C.A., Nat. Photonics 5, 12 (2011).
16.Luan, H.C., Lim, D.R., Lee, K.K., Chen, K.M., Sandland, J.G., Wada, K., Kimerling, L.C., Appl. Phys. Lett. 75, 2909 (1999).
17.Ishikawa, Y., Wada, K., Cannon, D.D., Luan, H.-C., Kimerling, L.C., Appl. Phys. Lett. 82, 2044 (2003).
18.Solomon, A., Fengnian, X., Bedell, S.W., Zhang, Y., Topura, T., Rice, P.M., Vlasov, Y.A., Opt. Express 18, 4986 (2010).
19.McComber, K.A., Duan, X., Liu, J.-F., Michel, J., Kimerling, L.C., Adv. Funct. Mater. 22, 1048 (2012).
20.Kuo, Y.H., Lee, Y.K., Ge, Y., Ren, S., Roth, J.E., Kamins, T.I., Miller, D.A.B., Harris, J.S., Nature 437, 1334 (2005).
21.Chaisakul, P., Marris-Morini, D., Rouifed, M.-S., Isella, G., Chrastina, D., Frigerio, J., Le Roux, X., Edmond, S., Coudevylle, J.-R., Vivien, L., Opt. Express 20, 3219 (2012).
22.Liu, J.F., Sun, X., Kimerling, L.C., Michel, J., Opt. Lett. 34, 1738 (2009).
23.Camacho-Aguilera, R.E., Cai, Y., Patel, N., Bessette, J.T., Romagnoli, M., Kimerling, L.C., Michel, J., Opt. Express 20, 11316 (2012).
24.Cai, Y., Han, Z., Wang, X., Camacho-Aguilera, R.E., Kimerling, L.C., Michel, J., Liu, J.-F., IEEE J. Sel. Top. Quantum Electron. 19, 1901009 (2013).
25.Luxtera, , “Molex Purchases Luxtera’s Silicon Photonics-Based Active Optical Cable (AOC) Business; Partners on Future AOC Development,” available at’s-silicon-photonics-based-active-optical-cable-aoc-business-partners-on-future-aoc-development.html. News release. January 11, 2011.
26.Cisco, , “Cisco Completes Acquisition of Lightwire,” available at News release. March 19, 2012.
27.Mellanox Technologies, Ltd. “Mellanox Technologies, Ltd. Completes Acquisition of Kotura, Inc.,” available at News release. August 15, 2013.
28.Lim, A.E.J., Liow, T.Y., Song, J.F., Li, C., Fang, Q., Tu, X. G., Duan, N., Chen, K.K., Poh, R., Peng, C., Mun, B.W., Islam, M.N., Park, J.S., Subbu, C., Lo, G.Q., in Optical Fiber Communication Conference and Exhibition/National Fiber Optic Engineers Conference (OFC/NFOEC), 2014.
29.Institute of Microelectronics, Alcatel-Lucent, and GlobalFoundries, “Collaboration between IME/A*STAR, GFS and Alcatel-Lucent to Bring Advanced Photonics Chips to Market,” available at News release, November 28, 2011.
30.Tu, X.G., Liow, T.Y., Song, J.F., Luo, X.S., Fang, Q., Yu, M.B., Lo, G.Q., Opt. Express 21 (10), 12776 (2013).
31.Sahni, S., Ayazi, A., Chi, Y.M., Dahl, A., De Dobbelaere, P., Gloeckner, S., Hon, K.Y., Hovey, S., Liang, Y., Mack, M., Masini, G., Mekis, A., Peterson, M., Pinguet, T., Schramm, J., Sharp, M., Sun, P., Timpe, R., Verslegers, L., 2013 IEEE 10th International Conference on Group-IV Photonics (IEEE, Seoul).
32.Solomon, A., Shank, S., Green, W., Khater, M., Kiewra, E., Reinholm, C., Kamlapurkar, S., Rylyakov, A., Schow, C., Horst, F., Pan, H., Topuria, T., Rice, P., Gill, D.M., Rosenberg, J., Barwicz, T., Yang, M., Proesel, J., Hofrichter, J., Offrein, B., Gu, X.X., Haensch, W., Ellis-Monaghan, J., Vlasov, Y., Tech. Dig. Int. Electron Dev. Mtg. (2012).
33.Xie, J.Y., “Interposer Integration through Chip on Wafer on Substrate (CoWoS) Process” (Semicon West, San Francisco, CA.) 2012 ;
34.Institute of Microelectronics, “2.5D Silicon Interposer Multi-Project Wafer;”



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed