Hostname: page-component-797576ffbb-lm8cj Total loading time: 0 Render date: 2023-12-04T13:51:35.078Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Engineering the Reststrahlen band with hybrid plasmon/phonon excitations

Published online by Cambridge University Press:  28 December 2015

W. Streyer
Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Electrical and Computer Engineering, 208 North Wright St, Urbana, Illinois, USA
K. Feng
University of Notre Dame, Electrical Engineering, Notre Dame, Indiana, USA
Y. Zhong
Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Electrical and Computer Engineering, 208 North Wright St, Urbana, Illinois, USA
A.J. Hoffman
University of Notre Dame, Electrical Engineering, Notre Dame, Indiana, USA
D. Wasserman*
Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Electrical and Computer Engineering, 208 North Wright St, Urbana, Illinois, USA
Address all correspondence to D. Wasserman at
Get access


There has been increasing interest in so-called phononic materials, which can support surface modes known as surface phonon polaritons, consisting of electromagnetic waves coupled to lattice vibrations at the surface of a polar material. While such excitations have a variety of desirable features, they are limited to the spectral range between a material's longitudinal and transverse optical phonon frequencies. In this work, we demonstrate that for materials whose free-carrier concentrations can be controlled, hybrid plasmonic/phononic modes can be supported across a range of frequencies including those generally forbidden by purely phononic materials.

Plasmonics, Photonics, and Metamaterials Research Letters
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Chern, R.-L., Liu, X.-X., and Chang, C.-C.: Particle plasmons of metal nanospheres: application of multiple scattering approach. Phys. Rev. E 76, 016609 (2007).Google Scholar
2. Koller, D.M., Hohenester, U., Hohenau, A., Ditlbacher, H., Reil, F., Galler, N., Aussenegg, F.R., Leitner, A., Trügler, A., and Krenn, J.R.: Superresolution Moiré mapping of particle plasmon modes. Phys. Rev. Lett. 104, 143901 (2010).Google Scholar
3. Derom, S., Vincent, R., Bouhelier, A., and Francs, G.C.d: Resonance quality, radiative/ohmic losses and modal volume of Mie plasmons. Europhys. Lett. 98, 47008 (2012).Google Scholar
4. Scharte, M., Porath, R., Ohms, T., Aeschlimann, M., Krenn, J.R., Ditlbacher, H., Aussenegg, F.R., and Liebsch, A.: Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl. Phys. B 73, 305310 (2001).Google Scholar
5. Foteinopoulou, S., Vigneron, J.P., and Vandenbem, C.: Optical near-field excitations on plasmonic nanoparticle-based structures. Opt. Express 15, 42534267 (2007).Google Scholar
6. Heitmann, D. and Raether, H.: Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces. Surf. Sci. 59, 1722 (1976).Google Scholar
7. Maier, S.A.: Plasmonics: Fundamentals and Applications (Springer, USA, 2007).Google Scholar
8. Maier, S.A. and Atwater, H.A.: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).Google Scholar
9. Zia, R., Schuller, J.A., Chandran, A., and Brongersma, M.L.: Plasmonics: the next chip-scale technology. Mater. Today 9, 2027 (2006).Google Scholar
10. Weeber, J.C., Lacroute, Y., and Dereux, A.: Optical near-field distributions of surface plasmon waveguide modes. Phys. Rev. B 68, 115401 (2003).Google Scholar
11. Bergman, D.J. and Stockman, M.I.: Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).Google Scholar
12. Hill, M.T., Marell, M., Leong, E.S.P., Smalbrugge, B., Zhu, Y., Sun, M., Van Veldhoven, P.J., Geluk, E.J., Karouta, F., Oei, Y.S., Nötzel, R., Ning, C.Z., and Smit, M.K.: Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 1110711112 (2009).Google Scholar
13. Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R.M., Gladden, C., Dai, L., Bartal, G., and Zhang, X.: Plasmon lasers at deep subwavelength scale. Nature 461, 629632 (2009).Google Scholar
14. Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., and Wiesner, U.: Demonstration of a spaser-based nanolaser. Nature 460, 11101112 (2009).Google Scholar
15. Johnson, P.B. and Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 43704379 (1972).Google Scholar
16. Law, S., Podolskiy, V., and Wasserman, D.: Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics. Nanophotonics 2, 103–130 (2013).Google Scholar
17. Naik, G.V., Kim, J., and Boltasseva, A.: Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1, 10901099 (2011).Google Scholar
18. Naik, G.V., Liu, J., Kildishev, A.V., Shalaev, V.M., and Boltasseva, A.: Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. U.S.A. 109, 88348838 (2012).Google Scholar
19. Naik, G.V., Schroeder, J.L., Ni, X., Kildishev, A.V., Sands, T.D., and Boltasseva, A.: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478489 (2012).Google Scholar
20. Cleary, J.W., Peale, R.E., Shelton, D.J., Boreman, G.D., Smith, C.W., Ishigami, M., Soref, R., Drehman, A., and Buchwald, W.R.: IR permittivities for silicides and doped silicon. J. Opt. Soc. Am. B 27, 730734 (2010).Google Scholar
21. Cleary, J.W., Streyer, W.H., Nader, N., Vangala, S., Avrutsky, I., Claflin, B., Hendrickson, J., Wasserman, D., Peale, R.E., Buchwald, W., and Soref, R.: Platinum germanides for mid- and long-wave infrared plasmonics. Opt. Express 23, 33163326 (2015).Google Scholar
22. Ginn, J.C., Jarecki, R.L. Jr, Shaner, E.A., and Davids, P.S.: Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110 (2011).Google Scholar
23. Shahzad, M., Medhi, G., Peale, R.E., Buchwald, W.R., Cleary, J.W., Soref, R., Boreman, G.D., and Edwards, O.: Infrared surface plasmons on heavily doped silicon. J. Appl. Phys. 110, 123105 (2011).Google Scholar
24. Streyer, W., Law, S., Rooney, G., Jacobs, T., and Wasserman, D.: Strong absorption and selective emission from engineered metals with dielectric coatings. Opt. Express 21, 91139122 (2013).Google Scholar
25. Rosenberg, A., Surya, J., Liu, R., Streyer, W., Law, S., Suzanne Leslie, L., Bhargava, R., and Wasserman, D.: Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors. J. Opt. 16, 094012 (2014).Google Scholar
26. Law, S., Yu, L., and Wasserman, D.: Epitaxial growth of engineered metals for mid-infrared plasmonics. J. Vac. Sci. Technol. B 31, 03C121 (2013).Google Scholar
27. Law, S., Liu, R., and Wasserman, D.: Doped semiconductors with band-edge plasma frequencies. J. Vac. Sci. Technol. B 32, 052601 (2014).Google Scholar
28. Ntsame Guilengui, V., Cerutti, L., Rodriguez, J.B., Tournié, E., and Taliercio, T.: Localized surface plasmon resonances in highly doped semiconductors nanostructures. Appl. Phys. Lett. 101, 161113 (2012).Google Scholar
29. Sachet, E., Shelton, C.T., Harris, J.S., Gaddy, B.E., Irving, D.L., Curtarolo, S., Donovan, B.F., Hopkins, P.E., Sharma, P.A., Sharma, A.L., Ihlefeld, J., Franzen, S., and Maria, J.-P.: Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414420 (2015).Google Scholar
30. Khurgin, J.B.: How to deal with the loss in plasmonics and metamaterials. Nat. Nano 10, 26 (2015).Google Scholar
31. Feng, K., Streyer, W., Zhong, Y., Hoffman, A.J., and Wasserman, D.: Photonic materials, structures and devices for Reststrahlen optics. Opt. Express 23, A1418A1433 (2015).Google Scholar
32. Caldwell, J.D., Lindsay, L., Giannini, V., Vurgaftman, I., Reinecke, T.L., Maier, S.A., and Glembocki, O.J.: Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 4468 (2015).Google Scholar
33. Jacob, Z.: Nanophotonics: hyperbolic phonon-polaritons. Nat. Mater. 13, 10811083 (2014).Google Scholar
34. Greffet, J.J., Carminati, R., Joulain, K., Mulet, J.P., Mainguy, S., and Chen, Y.: Coherent emission of light by thermal sources. Nature 416, 6164 (2002).Google Scholar
35. Huber, A., Ocelic, N., Kazantsev, D., and Hillenbrand, R.: Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).Google Scholar
36. Huber, A.J., Deutsch, B., Novotny, L., and Hillenbrand, R.: Focusing of surface phonon polaritons. Appl. Phys. Lett. 92, 203104 (2008).Google Scholar
37. Neuner, B. Iii, Korobkin, D., Fietz, C., Carole, D., Ferro, G., and Shvets, G.: Critically coupled surface phonon–polariton excitation in silicon carbide. Opt. Lett. 34, 26672669 (2009).Google Scholar
38. Wang, T., Li, P., Hauer, B., Chigrin, D.N., and Taubner, T.: Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 50515055 (2013).Google Scholar
39. Caldwell, J.D., Glembocki, O.J., Francescato, Y., Sharac, N., Giannini, V., Bezares, F.J., Long, J.P., Owrutsky, J.C., Vurgaftman, I., Tischler, J.G., Wheeler, V.D., Bassim, N.D., Shirey, L.M., Kasica, R., and Maier, S.A.: Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 36903697 (2013).Google Scholar
40. Dai, S., Fei, Z., Ma, Q., Rodin, A.S., Wagner, M., McLeod, A.S., Liu, M.K., Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Thiemens, M., Dominguez, G., Neto, A.H.C., Zettl, A., Keilmann, F., Jarillo-Herrero, P., Fogler, M.M., and Basov, D.N.: Tunable phonon polaritons in atomically thin van der Waals crystals of Boron Nitride. Science 343, 11251129 (2014).Google Scholar
41. Caldwell, J.D., Kretinin, A.V., Chen, Y., Giannini, V., Fogler, M.M., Francescato, Y., Ellis, C.T., Tischler, J.G., Woods, C.R., Giles, A.J., Hong, M., Watanabe, K., Taniguchi, T., Maier, S.A., and Novoselov, K.S.: Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).Google Scholar
42. Soref, R.A., Qiang, Z., and Zhou, W.: Far infrared photonic crystals operating in the Reststrahl region. Opt. Express 15, 1063710648 (2007).Google Scholar
43. Feng, K., Streyer, W., Islam, S.M., Verma, J., Jena, D., Wasserman, D., and Hoffman, A.J.: Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 107, 081108 (2015).Google Scholar
44. Streyer, W., Law, S., Rosenberg, A., Roberts, C., Podolskiy, V.A., Hoffman, A.J., and Wasserman, D.: Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide. Appl. Phys. Lett. 104, 131105 (2014).Google Scholar
45. Vassant, S., Marquier, F., Greffet, J.J., Pardo, F., and Pelouard, J.L.: Tailoring GaAs terahertz radiative properties with surface phonons polaritons. Appl. Phys. Lett. 97, 161101 (2010).Google Scholar
46. Vassant, S., Pardo, F., Bouchon, P., Hadar, R., Marquier, F., Greffet, J.J., and Pelouard, J.L.: Influence of a depletion layer on localized surface waves in doped semiconductor nanostructures. Appl. Phys. Lett. 100, 091103 (2012).Google Scholar
47. Olson, C.G. and Lynch, D.W.: Longitudinal-optical-phonon–plasmon coupling in GaAs. Phys. Rev. 177, 12311234 (1969).Google Scholar
48. Gu, P., Tani, M., Sakai, K., and Yang, T.-R.: Detection of terahertz radiation from longitudinal optical phonon–plasmon coupling modes in InSb film using an ultrabroadband photoconductive antenna. Appl. Phys. Lett. 77, 17981800 (2000).Google Scholar
49. Gu, P., Tani, M., Kono, S., Sakai, K., and Zhang, X.-C.: Study of terahertz radiation from InAs and InSb. J. Appl. Phys. 91, 55335537 (2002).Google Scholar
50. Hasselbeck, M.P., Stalnaker, D., Schlie, L.A., Rotter, T.J., Stintz, A., and Sheik-Bahae, M.: Emission of terahertz radiation from coupled plasmon–phonon modes in InAs. Phys. Rev. B 65, 233203 (2002).Google Scholar
51. Dekorsy, T., Auer, H., Waschke, C., Bakker, H.J., Roskos, H.G., Kurz, H., Wagner, V., and Grosse, P.: Emission of submillimeter electromagnetic waves by coherent phonons. Phys. Rev. Lett. 74, 738741 (1995).Google Scholar
52. Singwi, K.S. and Tosi, M.P.: Interaction of plasmons and optical phonons in degenerate semiconductors. Phys. Rev. 147, 658662 (1966).Google Scholar
53. Kim, O.K. and Spitzer, W.G.: Study of plasmon LO-phonon coupling in Te-doped Ga1-xAlxAs. Phys. Rev. B 20, 32583266 (1979).Google Scholar
54. Kukharskii, A.A.: Plasmon-phonon coupling in GaAs. Solid State Commun. 13, 17611765 (1973).Google Scholar
55. Del Pennino, U., Betti, M.G., Mariani, C., and Abbati, I.: Surface phonons and plasmons of GaAs(110) investigated by high resolution electron energy loss spectroscopy. Surf. Sci. 211–212, 557564 (1989).Google Scholar
56. Vallée, F., Ganikhanov, F., and Bogani, F.: Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs. Phys. Rev. B 56, 1314113146 (1997).Google Scholar
57. Hwang, E.H., Sensarma, R., and Das Sarma, S.: Plasmon–phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010).Google Scholar
58. Liu, Y. and Willis, R.F.: Plasmon–phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 81, 081406 (2010).Google Scholar
59. Dai, S., Ma, Q., Liu, M.K., Andersen, T., Fei, Z., Goldflam, M.D., Wagner, M., Watanabe, K., Taniguchi, T., Thiemens, M., Keilmann, F., Janssen, G.C.A.M., Zhu, S.E., Jarillo Herrero, P., Fogler, M.M., and Basov, D.N.: Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nano 10, 682686 (2015).Google Scholar
60. Woessner, A., Lundeberg, M.B., Gao, Y., Principi, A., Alonso-González, P., Carrega, M., Watanabe, K., Taniguchi, T., Vignale, G., Polini, M., Hone, J., Hillenbrand, R., and Koppens, F.H.L.: Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421425 (2015).Google Scholar
61. Brar, V.W., Jang, M.S., Sherrott, M., Kim, S., Lopez, J.J., Kim, L.B., Choi, M., and Atwater, H.: Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 38763880 (2014).Google Scholar
62. Moharam, M.G. and Gaylord, T.K.: Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811818 (1981).Google Scholar
63. Moharam, M.G., Gaylord, T.K., Grann, E.B., and Pommet, D.A.: Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 10681076 (1995).Google Scholar
64. From the V. Podolskiy Research Group: see for the group's MATLAB implementation of the RCWA numerical method.Google Scholar
65. Moore, W.J. and Holm, R.T.: Infrared dielectric constant of gallium arsenide. J. Appl. Phys. 80, 69396942 (1996).Google Scholar
66. Berini, P.: Figures of merit for surface plasmon waveguides. Opt. Express 14, 1303013042 (2006).Google Scholar
67. Wang, F. and Shen, Y.R.: General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).Google Scholar