Hostname: page-component-6b989bf9dc-6f5p8 Total loading time: 0.001 Render date: 2024-04-14T09:15:37.878Z Has data issue: false hasContentIssue false

Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics

Published online by Cambridge University Press:  10 September 2014

Gisele Azimi
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Hyuk-Min Kwon
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Kripa K. Varanasi*
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Address all correspondence to Kripa K. Varanasi
Get access


Robust superhydrophobic surfaces can improve the performance of various applications. Considerable research has focused on developing superhydrophobic surfaces, but in these studies, superhydrophobicity was attained using polymeric materials, which deteriorate under harsh environments. Recently, it has been shown that rare-earth oxide ceramics are hydrophobic and since they are ceramics, they withstand harsh environments including high temperature. Here we fabricate a superhydrophobic surface by texturing a ceria pellet using laser ablation. We demonstrate water repellency by showing an impinging water droplet bouncing off the surface. This study extends the possibility of producing robust superhydrophobic ceramics using accessible techniques for industrial applications.

Research Letters
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Quéré, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71 (2008).CrossRefGoogle Scholar
2.Feng, X. and Jiang, L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063 (2006).Google Scholar
3.Rathgen, H. and Mugele, F.: Microscopic shape and contact angle measurement at a superhydrophobic surface. Faraday Discuss. 146, 49 (2010).Google Scholar
4.Bocquet, L. and Lauga, E.: A smooth future? Nat. Mater. 10, 334 (2011).Google Scholar
5.Deng, X., Mammen, L., Butt, H.J., and Vollmer, D.: Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67 (2012).CrossRefGoogle ScholarPubMed
6.Bird, C.J., Dhiman, R., Kwon, H.M., and Varanasi, K.K.: Reducing the contact time of a bouncing drop. Nature 503, 385 (2013).CrossRefGoogle ScholarPubMed
7.Srinivasan, S., Choi, W., Park, K.C., Chhatre, S.S., Cohen, R.E., and McKinley, G.H.: Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter 9, 5691 (2013).Google Scholar
8.Vakarelski, I.U., Patankar, N.A., Marston, J.O., Chan, D.Y.C., and Thoroddsen, S.T.: Stabilization of leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274 (2012).Google Scholar
9.Bhushan, B. and Jung, Y.C.: Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1 (2011).CrossRefGoogle Scholar
10.Shirtcliffe, N.J., McHale, G., Newton, M.I., and Zhang, Y.: Superhydrophobic copper tubes with possible flow enhancement and drag reduction. ACS Appl. Mater. Interfaces 1, 1316 (2009).Google Scholar
11.Maitra, T., Tiwari, M.K., Antonini, C., Schoch, P., Jung, S., Eberle, P., and Poulikakos, D.: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14, 172 (2014).Google Scholar
12.Eberle, P., Tiwari, M.K., Maitra, T., and Poulikakos, D.: Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 6, 4874 (2014).Google Scholar
13.Guo, P., Zheng, Y., Wen, M., Song, C., Lin, Y., and Jiang, L.: Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 2642 (2012).Google Scholar
14.Antonini, C., Innocenti, M., Horn, T., Marengo, M., and Amirfazli, A.: Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 67, 58 (2011).Google Scholar
15.Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., and Aizenberg, J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699 (2010).Google Scholar
16.Meuler, A.J., McKinley, G.H., and Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048 (2010).Google Scholar
17.Lv, J., Song, Y., Jiang, L., and Wang, J.: Bio-inspired strategies for anti-icing. ACS Nano 8, 3152 (2014).CrossRefGoogle ScholarPubMed
18.Jung, S., Dorrestijn, M., Raps, D., Das, A., Megaridis, C.M., and Poulikakos, D.: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059 (2011).Google Scholar
19.Torresin, D., Tiwari, M.K., Del Col, D., and Poulikakos, D.: Flow condensation on copper-based nanotextured superhydrophobic surfaces. Langmuir 29, 840 (2013).Google Scholar
20.Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., and Wang, E.N.: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179 (2013).CrossRefGoogle ScholarPubMed
21.Anand, S., Paxson, A.T., Dhiman, R., Smith, J.D., and Varanasi, K.K.: Enhanced condensation on lubricant- impregnated nanotextured surfaces. ACS Nano 6, 10122 (2012).Google Scholar
22.Patankar, N.A.: Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 1613 (2010).Google Scholar
23.Dietz, C., Rykaczewski, K., Fedorov, A.G., and Joshi, Y.: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl. Phys. Lett. 97, 033104 (2010).Google Scholar
24.Narhe, R.D., Khandkar, M.D., Shelke, P.B., Limaye, A.V., and Beysens, D.A.: Condensation-induced jumping water drops. Phys. Rev. E 80, 031604 (2009).Google Scholar
25.Boreyko, J.B. and Chen, C.H.: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).Google Scholar
26.Dorrer, C. and Rühe, J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820 (2007).Google Scholar
27.Verho, T., Bower, C., Andrew, P., Franssila, S., Ikkala, O., and Ras, R.H.A.: Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673 (2011).Google Scholar
28.Liu, K. and Jiang, L.: Metallic surfaces with special wettability. Nanoscale 3, 825 (2011).Google Scholar
29.Wagterveld, R.M., Berendsen, C.W.J., Bouaidat, S., and Jonsmann, J.: Ultralow hysteresis superhydrophobic surfaces by excimer laser modification of SU-8. Langmuir 22, 10904 (2006).CrossRefGoogle ScholarPubMed
30.Khorasani, M.T., Mirzadeh, H., and Kermani, Z.: Wettability of porous polydimethylsiloxane surface: morphology study. Appl. Surf. Sci. 242, 339 (2005).Google Scholar
31.Shirtcliffe, N.J., Aqil, S., Evans, C., McHale, G., Newton, M.I., Perry, C.C., and Roach, P.: The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. J. Micromech. Microeng. 14, 1384 (2004).Google Scholar
32.Drzymala, J.: Hydrophobicity and collectorless floatation of inorganic materials. Adv. Colloid Interface Sci. 50, 143 (1994).Google Scholar
33.Azimi, G., Dhiman, R., Kwon, H.-M., Paxson, A.T., and Varanasi, K.K.: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315 (2013).Google Scholar
34.Tian, Y. and Jiang, L.: Intrinsically robust hydrophobicity. Nat. Mater. 12, 291 (2013).Google Scholar
35.Martínez, L., Román, E., de Segovia, J.L., Poupard, S., Creus, J., and Pedraza, F.: Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc. Appl. Surf. Sci. 257, 6202 (2011).Google Scholar
36.Jiang, K.: Fabrication and Catalytic Property of Cerium Oxide Nanomaterials. Ph.D. Thesis, University of Nebraska, Lincoln, 2011, Ch. 2.Google Scholar
37.Lawrence, N.J., Jiang, K., and Cheung, C.L.: Formation of a porous cerium oxide membrane by anodization. Chem. Commun. 47, 2703 (2011).Google Scholar
38.Gentleman, M.M., Ruud, J.A., Blohm, M.L., and Manoharan, M.: Wetting resistant materials and articles made therewith. US Patent/US8062775 B2, 2011.Google Scholar
39.Wang, X., Shephard, J.D., Dear, F.C., and Hand, D.P.: Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J. Am. Ceram. Soc. 91, 391 (2008).Google Scholar
40.Samant, A.N. and Dahotre, N.B.: Laser machining of structural ceramics—a review. J. Eur. Ceram. Soc. 29, 969 (2009).Google Scholar
41.Kietzig, A.M., Hatzikiriakos, S.G., and Englezos, P.: Patterned superhydrophobic metallic surfaces. Langmuir 25, 4821 (2009).Google Scholar
42.Kim, S.H., Sohn, I.-B., and Jeong, S.: Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining. Appl. Surf. Sci. 255, 9717 (2009).Google Scholar
43.Vorobyev, A.Y. and Guo, C.: Femtosecond laser nanostructuring of metals. Opt. Express 14, 2164 (2006).Google Scholar
44.Ben-Yakar, A., Byer, R.L., Harkin, A., Ashmore, J., Stone, H.A., Shen, M., and Mazur, E.: Morphology of femtosecond-laser-ablated borosilicate glass surfaces. Appl. Phys. Lett. 83, 3030 (2003).CrossRefGoogle Scholar
45.Kurokawa, A., Odaka, K., Azuma, Y., Fujimoto, T., and Kojima, I.: Diagnosis and cleaning of carbon contamination on SiO2 thin film. J. Surf. Anal. 15, 337 (2009).Google Scholar
46.Kim, K.D., Tai, W.S., Kim, Y.D., Cho, S.-J., Bae, I.S., Boo, J.H., Lee, B.C., Yang, K.H., and Park, O.K.: Change in water contact angle of carbon contaminated TiO2 surfaces by high-energy electron beam. Bull. Korean Chem. Soc. 30, 1067 (2009).Google Scholar
47.Knowles, M.R.H., Rutterford, G., Karnakis, D., and Ferguson, A.: Micro-machining of metals, ceramics and polymers using nanosecond lasers. Int. J. Adv. Manuf. Technol. 33, 95 (2007).Google Scholar