Skip to main content Accessibility help

Lifetime limitations in organic electronic devices due to metal electrochemical migration

  • Robert Abbel (a1), Linda van de Peppel (a1), Gerwin Kirchner (a1), Jasper J. Michels (a2) and Pim Groen (a1) (a3)...


Operational lifetime is a critical performance parameter of organic electronic devices and can be cut short by multiple degradation mechanisms. One supposed cause is metal migration between the electrodes, which, however, is difficult to study independently of other failure modes. We present a setup, which excludes such competing processes and demonstrates that silver (Ag) electrochemical migration through organic optoelectronic materials occurs predominantly by cation transport. Metal dendrites form at the cathode, eventually causing short circuits between the electrodes. Lifetime studies with organic light-emitting diodes containing Ag electrodes suggest that results obtained with our setup can provide relevant information about degradation in real devices.


Corresponding author

Address all correspondence to Pim Groen, Jasper J. Michels at,


Hide All
1.Kohman, G.T., Hermance, H.W., and Downes, G.H.: Silver migration in electrical insulation. Bell Syst. Tech. J. 34, 1115 (1955).
2.Ho, P.S. and Kwok, T.: Electromigration in metals. Rep. Progr. Phys. 52, 301 (1989).
3.Yang, S., Wu, J., and Christou, A.: Initial stage of silver electrochemical migration degradation. Microel. Rel. 46, 1915 (2006).
4.Noh, B.I., Yoon, J.W., Kim, K.S., Lee, Y.C., and Jung, S.B.: Microstructure, electrical properties, and electrochemical migration of a directly printed Ag pattern. J. Electron. Mater. 40, 35 (2011).
5.Hesketh, R.V.: Electromigration: the electron wind. Phys. Rev. B 19, 1727 (1979).
6.Cao, W., Li, J., Chen, H., and Xue, J.: Transparent electrodes for organic optoelectronic devices: a review. J. Photonics Energy 4, 040990 (2014).
7.Grandin, H.M., Tadayyon, S.M., Lennard, W.N., Griffiths, K., Coatsworth, L.L., Norton, P.R., Popovic, Z.D., Aziz, H., and Hu, N.X.: Rutherford backscattering and secondary ion mass spectrometry investigation of Mg:Ag-tris(8-hydroxy quinoline) aluminium interfaces. Org. Electron. 4, 9 (2003).
8.Song, W., So, S.K., Moulder, J., Qiu, Y., Zhu, Y., and Cao, L.: Study on the interaction between Ag and tris(8-hydroxyquinoline) aluminium using x-ray photoelectron spectroscopy. Surf. Interf. Anal. 32, 70 (2001).
9.Song, W., Li, Z., So, S.K., Qiu, Y., Zhu, Y., and Cao, L.: Dynamic SIMS characterization of interface structure of Ag/Alq3/NPB/ITO model devices. Surf. Interf. Anal. 32, 102 (2001).
10.Ke, L., Chua, S.J., Zhang, K., and Yakovlev, N.: Degradation and failure of organic light-emitting devices. Appl. Phys. Lett. 80, 2195 (2002).
11.Cumpston, B.H. and Jensen, K.F.: Electromigration of aluminium cathodes in polymer-based electroluminescent devices. Appl. Phys. Lett. 69, 3941 (1996).
12.Lee, S.T., Gao, Z.Q., and Hung, L.S.: Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75, 1404 (1999).
13.Chua, S.J., Ke, L., Kumar, R.S., and Zhang, K.: Stabilization of electrode migration in polymer electroluminescent devices. Appl. Phys. Lett. 81, 1119 (2002).
14.Luo, Y., Aziz, H., Popvic, Z.D., and Xu, G.: Degradation mechanisms in organic light-emitting devices: metal migration model versus unstable tris(8-hydroxyquinoline) aluminum cationic model. J. Appl. Phys. 101, 034510 (2007).
15.Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., and Reuter, K.: PEDOT—Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Boca Raton, USA, 2011).
16.Chaikin, P.M. and Lubensky, T.C.: Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, UK, 1995), chapter 2.
17.Uwaha, M. and Saito, Y.: Aggregation growth in a gas of finite density: velocity selection via fractal dimension of diffusion-limited aggregation. Phys. Rev. A 40, 4716 (1989).
18.Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953).
19.Chazalviel, J.N.: Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355 (1990).
20.Elezgaray, J., Léger, C., and Argoul, F.: Linear stability analysis of unsteady galvanostatic electrodeposition in the two-dimensional diffusion-limited regime. J. Electrochem. Soc. 145, 2016 (1998).
21.Akolkar, R.: Mathematical model of the dendritic growth during lithium electrodeposition. J. Power Sources 23, 232 (2013).
22.Mayers, M.Z., Kaminksi, J.W., and Miller, T.F. III: Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116, 26214 (2012).
23.Magan, R.V. and Sureshkumar, R.: Effect of interfacial reaction rate on the morphogenesis of nanostructured coatings in a simulated electrodeposition process. Nanotechnology 16, 8545 (2005).
24.Park, M.S., Ma, S.B., Lee, D.J., Im, D., Doo, S.G., and Yamamoto, O.: A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014).
25.Cogswell, D.A.: Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 011301 (2015).
26.Abbel, R., van Lammeren, T., Hendriks, R., Ploegmakers, J., Rubingh, E.J., Meinders, E.R., and Groen, W.A.: Photonic flash sintering of silver nanoparticle inks: a fast and convenient method for the preparation of highly conductive structures on foil. MRS Commun. 2, 145 (2012).
27.Meerholz, K., Gregorius, H., Müllen, K., and Heinze, J.: Voltammetric studies of solution and solid-state properties of monodisperse oligo (p-phenylenevinylene)s. Adv. Mater. 6, 671 (1994).
28.Zamanzadeh, M., Liu, Y.S., Wynblatt, P., and Warren, G.W.: Electrochemical migration of copper in adsorbed moisture layers. Corrosion 45, 643 (1989).
29.Yamamoto, M., Kakiuchi, H., Kashiwagi, Y., Yoshida, Y., Ohno, T., and Nakamoto, M.: Synthesis of Ag-Pd alloy nanoparticles suitable as precursors for ionic migration-resistant conductive film. Bull. Chem. Soc. Jpn. 83, 1386 (2010).
30.Nardes, A.M., Kemerkink, M., de Kok, M.M., Vinken, E., Maturova, K., and Janssen, R.A.J.: Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org. Electr. 9, 727 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Abbel supplementary material
Abbel supplementary material 1

 Word (3.3 MB)
3.3 MB
Supplementary materials

Abbel supplementary material
Abbel supplementary material 2

 Unknown (1.4 MB)
1.4 MB
Supplementary materials

Abbel supplementary material
Abbel supplementary material 3

 Video (9.1 MB)
9.1 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed