Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T06:21:10.463Z Has data issue: false hasContentIssue false

Lifetime limitations in organic electronic devices due to metal electrochemical migration

Published online by Cambridge University Press:  19 July 2017

Robert Abbel
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Linda van de Peppel
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Gerwin Kirchner
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Jasper J. Michels*
Affiliation:
Max Plack Institut für Polymerenforschung, Ackermannweg 10, 55128 Mainz, Germany
Pim Groen*
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS Delft, The Netherlands
*
Address all correspondence to Pim Groen, Jasper J. Michels at pim.groen@tno.nl, michels@mpip-mainz.mpg.de
Address all correspondence to Pim Groen, Jasper J. Michels at pim.groen@tno.nl, michels@mpip-mainz.mpg.de
Get access

Abstract

Operational lifetime is a critical performance parameter of organic electronic devices and can be cut short by multiple degradation mechanisms. One supposed cause is metal migration between the electrodes, which, however, is difficult to study independently of other failure modes. We present a setup, which excludes such competing processes and demonstrates that silver (Ag) electrochemical migration through organic optoelectronic materials occurs predominantly by cation transport. Metal dendrites form at the cathode, eventually causing short circuits between the electrodes. Lifetime studies with organic light-emitting diodes containing Ag electrodes suggest that results obtained with our setup can provide relevant information about degradation in real devices.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kohman, G.T., Hermance, H.W., and Downes, G.H.: Silver migration in electrical insulation. Bell Syst. Tech. J. 34, 1115 (1955).Google Scholar
2.Ho, P.S. and Kwok, T.: Electromigration in metals. Rep. Progr. Phys. 52, 301 (1989).Google Scholar
3.Yang, S., Wu, J., and Christou, A.: Initial stage of silver electrochemical migration degradation. Microel. Rel. 46, 1915 (2006).Google Scholar
4.Noh, B.I., Yoon, J.W., Kim, K.S., Lee, Y.C., and Jung, S.B.: Microstructure, electrical properties, and electrochemical migration of a directly printed Ag pattern. J. Electron. Mater. 40, 35 (2011).Google Scholar
5.Hesketh, R.V.: Electromigration: the electron wind. Phys. Rev. B 19, 1727 (1979).Google Scholar
6.Cao, W., Li, J., Chen, H., and Xue, J.: Transparent electrodes for organic optoelectronic devices: a review. J. Photonics Energy 4, 040990 (2014).Google Scholar
7.Grandin, H.M., Tadayyon, S.M., Lennard, W.N., Griffiths, K., Coatsworth, L.L., Norton, P.R., Popovic, Z.D., Aziz, H., and Hu, N.X.: Rutherford backscattering and secondary ion mass spectrometry investigation of Mg:Ag-tris(8-hydroxy quinoline) aluminium interfaces. Org. Electron. 4, 9 (2003).Google Scholar
8.Song, W., So, S.K., Moulder, J., Qiu, Y., Zhu, Y., and Cao, L.: Study on the interaction between Ag and tris(8-hydroxyquinoline) aluminium using x-ray photoelectron spectroscopy. Surf. Interf. Anal. 32, 70 (2001).Google Scholar
9.Song, W., Li, Z., So, S.K., Qiu, Y., Zhu, Y., and Cao, L.: Dynamic SIMS characterization of interface structure of Ag/Alq3/NPB/ITO model devices. Surf. Interf. Anal. 32, 102 (2001).Google Scholar
10.Ke, L., Chua, S.J., Zhang, K., and Yakovlev, N.: Degradation and failure of organic light-emitting devices. Appl. Phys. Lett. 80, 2195 (2002).Google Scholar
11.Cumpston, B.H. and Jensen, K.F.: Electromigration of aluminium cathodes in polymer-based electroluminescent devices. Appl. Phys. Lett. 69, 3941 (1996).Google Scholar
12.Lee, S.T., Gao, Z.Q., and Hung, L.S.: Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75, 1404 (1999).Google Scholar
13.Chua, S.J., Ke, L., Kumar, R.S., and Zhang, K.: Stabilization of electrode migration in polymer electroluminescent devices. Appl. Phys. Lett. 81, 1119 (2002).Google Scholar
14.Luo, Y., Aziz, H., Popvic, Z.D., and Xu, G.: Degradation mechanisms in organic light-emitting devices: metal migration model versus unstable tris(8-hydroxyquinoline) aluminum cationic model. J. Appl. Phys. 101, 034510 (2007).Google Scholar
15.Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., and Reuter, K.: PEDOT—Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Boca Raton, USA, 2011).Google Scholar
16.Chaikin, P.M. and Lubensky, T.C.: Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, UK, 1995), chapter 2.Google Scholar
17.Uwaha, M. and Saito, Y.: Aggregation growth in a gas of finite density: velocity selection via fractal dimension of diffusion-limited aggregation. Phys. Rev. A 40, 4716 (1989).Google Scholar
18.Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953).Google Scholar
19.Chazalviel, J.N.: Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355 (1990).Google Scholar
20.Elezgaray, J., Léger, C., and Argoul, F.: Linear stability analysis of unsteady galvanostatic electrodeposition in the two-dimensional diffusion-limited regime. J. Electrochem. Soc. 145, 2016 (1998).Google Scholar
21.Akolkar, R.: Mathematical model of the dendritic growth during lithium electrodeposition. J. Power Sources 23, 232 (2013).Google Scholar
22.Mayers, M.Z., Kaminksi, J.W., and Miller, T.F. III: Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116, 26214 (2012).Google Scholar
23.Magan, R.V. and Sureshkumar, R.: Effect of interfacial reaction rate on the morphogenesis of nanostructured coatings in a simulated electrodeposition process. Nanotechnology 16, 8545 (2005).Google Scholar
24.Park, M.S., Ma, S.B., Lee, D.J., Im, D., Doo, S.G., and Yamamoto, O.: A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014).Google Scholar
25.Cogswell, D.A.: Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 011301 (2015).Google Scholar
26.Abbel, R., van Lammeren, T., Hendriks, R., Ploegmakers, J., Rubingh, E.J., Meinders, E.R., and Groen, W.A.: Photonic flash sintering of silver nanoparticle inks: a fast and convenient method for the preparation of highly conductive structures on foil. MRS Commun. 2, 145 (2012).Google Scholar
27.Meerholz, K., Gregorius, H., Müllen, K., and Heinze, J.: Voltammetric studies of solution and solid-state properties of monodisperse oligo (p-phenylenevinylene)s. Adv. Mater. 6, 671 (1994).Google Scholar
28.Zamanzadeh, M., Liu, Y.S., Wynblatt, P., and Warren, G.W.: Electrochemical migration of copper in adsorbed moisture layers. Corrosion 45, 643 (1989).Google Scholar
29.Yamamoto, M., Kakiuchi, H., Kashiwagi, Y., Yoshida, Y., Ohno, T., and Nakamoto, M.: Synthesis of Ag-Pd alloy nanoparticles suitable as precursors for ionic migration-resistant conductive film. Bull. Chem. Soc. Jpn. 83, 1386 (2010).Google Scholar
30.Nardes, A.M., Kemerkink, M., de Kok, M.M., Vinken, E., Maturova, K., and Janssen, R.A.J.: Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org. Electr. 9, 727 (2008).Google Scholar
Supplementary material: File

Abbel supplementary material

Abbel supplementary material 1

Download Abbel supplementary material(File)
File 3.3 MB
Supplementary material: File

Abbel supplementary material

Abbel supplementary material 2

Download Abbel supplementary material(File)
File 1.4 MB

Abbel supplementary material

Abbel supplementary material 3

Download Abbel supplementary material(Video)
Video 9.1 MB