Skip to main content

Natural melanin pigments and their interfaces with metal ions and oxides: emerging concepts and technologies

  • Eduardo Di Mauro (a1), Ri Xu (a1), Guido Soliveri (a1) and Clara Santato (a1)

Melanin (from the Greek μέλας, mélas, black) is a biopigment ubiquitous in flora and fauna, featuring broadband optical absorption, hydration-dependent electrical response, ion-binding affinity as well as antioxidative and radical-scavenging properties. In the human body, photoprotection in the skin and ion flux regulation in the brain are some biofunctional roles played by melanin. Here we discuss the progress in melanin research that underpins emerging technologies in energy storage/conversion, ion separation/water treatment, sunscreens, and bioelectronics. The melanin research aims at developing approaches to explore natural materials, well beyond melanin, which might serve as a prototype benign material for sustainable technologies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Natural melanin pigments and their interfaces with metal ions and oxides: emerging concepts and technologies
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Natural melanin pigments and their interfaces with metal ions and oxides: emerging concepts and technologies
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Natural melanin pigments and their interfaces with metal ions and oxides: emerging concepts and technologies
      Available formats
Corresponding author
Address all correspondence to Clara Santato at
Hide All
1. Jablonski, N.G. and Chaplin, G.: Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA 107, 8962 (2010).
2. Murillo-cuesta, S., Contreras, J., Zurita, E., Cediel, R., and Cantero, M.: Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell Melanoma Res. 23, 72 (2009).
3. Borovansky, J.: Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions (Wiley-Blackwell, Weinhem, Germany, 2011).
4. d'Ischia, M., Wakamatsu, K., Cicoira, F., Di Mauro, E., Garcia-Borron, J.C., Commo, S., Galván, I., Ghanem, G., Kenzo, K., Meredith, P., Pezzella, A., Santato, C., Sarna, T., Simon, J.D., Zecca, L., Zucca, F.A., Napolitano, A., and Ito, S.: Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma Res. 28, 520 (2015).
5. Lamb, H.: Hydrodynamics, 6th ed. (Cambridge University Press: Cambridge, England, 1940), pp. 573, 645.
6. Prota, G.: Melanins and Melanogenesis (Academic Press, San Diego, USA, 1992).
7. Panessa, B.J. and Zadunaisky, J.A.: Pigment granules: a calcium reservoir in the vertebrate eye. Exp. Eye Res. 32, 593 (1981).
8. Ben-Shachar, D. and Youdim, M.B.H.: Iron, melanin and dopamine interaction: relevance to Parkinson's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 17, 139 (1993).
9. Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).
10. Liu, Y., Ai, K., and Lu, L.: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057 (2014).
11. d'Ischia, M., Napolitano, A., Pezzella, A., Meredith, P., and Sarna, T.: Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew. Chem. – Int. Ed. 48, 3914 (2009).
12. Panzella, L., Gentile, G., D'Errico, G., Della Vecchia, N.F., Errico, M.E., Napolitano, A., Carfagna, C., and D'Ischia, M.: Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angew. Chem. – Int. Ed. 52, 12684 (2013).
13. Meng, S., Kaxiras, E., Pezzella, A., Panzella, L., Natangelo, A., Arzillo, M., Napolitano, A., and D'Ischia, M.: Theoretical models of eumelanin protomolecules and their optical properties. J. Org. Chem. 72, 9225 (2007).
14. Kaxiras, E., Tsolakidis, A., Zonios, G., and Meng, S.: Structural model of eumelanin. Phys. Rev. Lett. 97, 218102 (2006).
15. Kim, Y.J., Khetan, A., Wu, W., Chun, S.-E., Viswanathan, V., Whitacre, J.F., and Bettinger, C.J.: Evidence of porphyrin-like structures in natural melanin pigments using electrochemical fingerprinting. Adv. Mater. 28, 3173 (2016).
16. Pezzella, A., Panzella, L., Natangelo, A., Arzillo, M., Napolitano, A., and D'Ischia, M.: 5,6-Dihydroxyindole tetramers with ‘anomalous’ interunit bonding patterns by oxidative coupling of 5,5′,6,6′-tetrahydroxy-2,7′-biindolyl: emerging complexities on the way toward an improved model of eumelanin buildup. J. Org. Chem. 72, 9225 (2007).
17. Chen, C.T., Ball, V., De Almeida Gracio, J.J., Singh, M.K., Toniazzo, V., Ruch, D., and Buehler, M.J.: Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design. ACS Nano 7, 1524 (2013).
18. Chen, C-T., Chuang, C., Cao, J., Ball, V., Ruch, D., and Buehler, M.J.: Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. Nat. Commun. 5, 3859 (2014).
19. Seagle, B-L.L., Gasyna, E.M., Mieler, W.F., and Norris, J.R.: Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis . Proc. Natl. Acad. Sci. USA 103, 16644 (2006).
20. Sarna, T.: Properties and function of the ocular melanin – a photobiophysical view. J. Photochem. Photobiol. B Biol. 12, 215 (1992).
21. Sealy, R., Felix, C., Hyde, J., and Swartz, H.: Structure and reactivity of melanins: influence of free radicals and metal ions. In Free Radicals in Biology, edited by Pryor, W. (Academic Press, New York, NY, 1980), vol. 4, pp. 209259.
22. Meredith, P. and Sarna, T.: The physical and chemical properties of eumelanin. Pigment Cell Res. 19, 572 (2006).
23. Mostert, B., Powell, B.J., Pratt, F.L., Hanson, G.R., Sarna, T., Gentle, I.R., and Meredith, P.: Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl. Acad. Sci. USA 109, 8943 (2012).
24. Blois, M.S., Zahlan, A.B., and Maling, J.E.: Electron spin resonance studies on melanin. Biophys. J. 4, 471 (1964).
25. Froncisz, W., Sarna, T., and Hyde, J.S.: Cu2+ probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy, synthetic melanins. Arch. Biochem. Biophys. 202, 289 (1980).
26. Pasenkiewicz-Gierula, M. and Sealy, R.C.: Analysis of the ESR spectrum of synthetic dopa melanin. Biochim. Biophys. Acta – Gen. Subj. 884, 510 (1986).
27. Nilges, J.M.: The Pigmentary System, Physiology and Pathophysiology (Oxford University Press, New York, USA, 1998).
28. Jiang, S., Liu, X-M., Dai, X., Zhou, Q., Lei, T-C., Beermann, F., Wakamatsu, K., and Xu, S.-Z.: Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: implication for skin photoprotection against UVA radiation. Free Radic. Biol. Med. 48, 1144 (2010).
29. Tran, M.L., Powell, B.J., and Meredith, P.: Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance. Biophys. J. 90, 743 (2006).
30. Stark, K.B., Gallas, J.M., Zajac, G.W., Eisner, M., and Golab, J.T.: Spectroscopic study and simulation from recent structural models for eumelanin: I. Monomer, dimers. J. Phys. Chem. B 107, 3061 (2003).
31. Powell, M.R. and Rosenberg, B.: The nature of the charge carriers in solvated biomacromolecules, J. Bioenerg. 1, 493 (1970).
32. Meredith, P., Bettinger, C.J., Irimia-Vladu, M., Mostert, A.B., and Schwenn, P.E.: Electronic and optoelectronic materials and devices inspired by nature. Rep. Prog. Phys. 76, 34501 (2013).
33. Amit, M., Appel, S., Cohen, R., Cheng, G., Hamley, I.W., and Ashkenasy, N.: Hybrid proton and electron transport in peptide fibrils. Adv. Funct. Mater. 24, 5873 (2014).
34. Hemmatian, Z., Keene, S., Josberger, E., Miyake, T., Arboleda, C., Soto-Rodríguez, J., Baneyx, F., and Rolandi, M.: Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin. Nat. Commun. 7, 12981 (2016).
35. McGinness, J., Corry, P., and Proctor, P.: Amorphous semiconductor switching in melanins. Science 183, 853 (1974).
36. Rienecker, S.B., Mostert, A.B., Schenk, G., Hanson, G.R., and Meredith, P.: Heavy water as a probe of the free radical nature and electrical conductivity of melanin. J. Phys. Chem. B 119, 14994 (2015).
37. Wünsche, J., Deng, Y., Kumar, P., Di Mauro, E., Josberger, E., Sayago, J., Pezzella, A., Soavi, F., Cicoira, F., Rolandi, M., and Santato, C.: Protonic and electronic transport in hydrated thin films of the pigment eumelanin. Chem. Mater. 27, 436 (2015).
38. Wünsche, J., Cicoira, F., Graeff, C.F.O., and Santato, C.: Eumelanin thin films: solution-processing, growth, and charge transport properties. J. Mater. Chem. B 1, 3836 (2013).
39. Kumar, P., Di Mauro, E., Zhang, S., Pezzella, A., Soavi, F., Santato, C., and Cicoira, F.: Melanin-based flexible supercapacitors. J. Mater. Chem. C 4, 9516 (2016).
40. Borges, C.R., Roberts, J.C., Wilkins, D.G., and Rollins, D.E.: Cocaine, benzoylecgonine, amphetamine, and N-acetylamphetamine binding to melanin subtypes. J. Anal. Toxicol. 27, 125 (2003).
41. Hong, L. and Simon, J.D.: Physical and chemical characterization of iris and choroid melanosomes isolated from newborn and mature cows. Photochem. Photobiol. 81, 517 (2007).
42. Andrzejczak, J. and Buszman, E.: Interaction of Fe3+, Cu2+ and Zn2+ with melanin and melanoproteins from bovine eyes. Acta Biochim. Pol. 39, 85 (1992).
43. Borovanský, J.: Zinc in pigmented cells and structures, interactions and possible roles. Sb. Lékasky J. 95, 309 (1994).
44. Lydén, A., Larsson, B.S., and Lindquist, N.G.: Melanin affinity of manganese. Acta Pharmacol. Toxicol. (Copenh). 55, 133 (1984).
45. Larsson, B. and Tjälve, H.: Studies on the melanin-affinity of metal ions. Acta Physiol. Scand. 104, 479 (1978).
46. Saini, A.S. and Melo, J.S.: Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresour. Technol. 149, 155 (2013).
47. Hong, L. and Simon, J.D.: Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin. J. Phys. Chem. B 111, 7938 (2007).
48. Hong, L. and Simon, J.D.: Insight into the binding of divalent cations to Sepia eumelanin from IR absorption spectroscopy. Photochem. Photobiol. 82, 1265 (2006).
49. Sutter, J-U. and Birch, D.J.S.: Metal ion influence on eumelanin fluorescence and structure. Meth. Appl. Fluoresc. 2, 24005 (2014).
50. Palumbo, A., Solano, F., Misuraca, G., Aroca, P., Garcia Borron, J.C., Lozano, J.A., and Prota, G.: Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome. Biochim. Biophys. Acta – Gen. Subj. 1115, 1 (1991).
51. Palumbo, A., D'Ischia, M., Misuraca, G., Prota, G., and Schultz, T.M.: Structural modifications in biosynthetic melanins induced by metal ions. Biochim. Biophys. Acta – Gen. Subj. 964, 193 (1988).
52. Albano, L.G., Di Mauro, E., Kumar, P., Cicoira, F., Graeff, C.F., and Santato, C.: Novel insights on the physicochemical properties of eumelanins and their DMSO derivatives. Polym. Int. 26, 19007 (2016).
53. Gallas, J.M., Littrell, K.C., Seifert, S., Zajac, G.W., and Thiyagarajan, P.: Solution structure of copper ion-induced molecular aggregates of tyrosine melanin. Biophys. J. 77, 1135 (1999).
54. Liu, Y. and Simon, J.D.: Metal-ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res. 18, 42 (2005).
55. Kiss, T. and Gergely, A.: Complexes of 3,4-dihydroxyphenyl derivatives. VI. Microprocesses of formation of proton and metal complexes of L-dopa. Inorg. Chim. Acta 78, 247 (1983).
56. Hong, L., Liu, Y., and Simon, J.D.: Binding of metal ions to melanin and their effects on the aerobic reactivity. Photochem. Photobiol. 80, 477 (2004).
57. Szpoganicz, B., Gidanian, S., Kong, P., and Farmer, P.: Metal binding by melanins: studies of colloidal dihydroxyindole-melanin, and its complexation by Cu(II) and Zn(II) ions. J. Inorg. Biochem. 89, 45 (2002).
58. Kim, Y.J., Wu, W., Chun, S-E., Whitacre, J.F., and Bettinger, C.J.: Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells. Adv. Mater. 26, 6572 (2014).
59. Liu, Y., Hong, L., Kempf, V.R., Wakamatsu, K., Ito, S., and Simon, J.D.: Ion-exchange and adsorption of Fe(III) by Sepia melanin. Pigment Cell Res. 17, 262 (2004).
60. Chen, S., Xue, C., Wang, J., Feng, H., Wang, Y., Ma, Q., and Wang, D.: Adsorption of Pb(II) and Cd(II) by squid Ommastrephes bartramii melanin. Bioinorg. Chem. Appl. 2009, 1 (2009).
61. Bush, W.D. and Simon, J.D.: Quantification of Ca2+ binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis. Pigment Cell Res. 20, 134 (2007).
62. Samokhvalov, A., Liu, Y., and Simon, J.D.: Characterization of the Fe(III)-binding site in Sepia eumelanin by resonance Raman confocal microspectroscopy. Photochem. Photobiol. 80, 84 (2007).
63. Costa, T.G., Younger, R., Poe, C., Farmer, P.J., and Szpoganicz, B.: Studies on synthetic and natural melanin and its affinity for Fe(III) ion. Bioinorg. Chem. Appl. 2012, 1 (2012).
64. Kikkawa, H., Ogita, Z., and Fujito, S.: Nature of pigments derived from tyrosine and tryptophan in animals. Science 121, 43 (1955).
65. Najder-Kozdrowska, L., Pilawa, B., Więckowski, A.B., Buszman, E., and Wrześniok, D.: Influence of copper(II) ions on radicals in DOPA-melanin. Appl. Magn. Reson. 36, 81 (2009).
66. Stainsack, J., Mangrich, A.S., Maia, C.M.B.F., Machado, V.G., dos Santos, J.C.P., and Nakagaki, S.: Spectroscopic investigation of hard and soft metal binding sites in synthetic melanin. Inorg. Chim. Acta 356, 243 (2003).
67. Park, H-A., Kim, Y.J., Kwon, I.S., Klosterman, L., and Bettinger, C.J.: Lithium purification from aqueous solutions using bioinspired redox-active melanin membranes. Polym. Int. 65, 1331 (2016).
68. Grzyska, P.K., Müller, T.A., Campbell, M.G., and Hausinger, R.P.: Metal ligand substitution and evidence for quinone formation in taurine/α-ketoglutarate dioxygenase. J. Inorg. Biochem. 101, 797 (2007).
69. Harrington, M.J., Masic, A., Holten-Andersen, N., Waite, J.H., and Fratzl, P.: Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328, 216 (2010).
70. Lee, B.P., Messersmith, P.B., Israelachvili, J.N., and Waite, J.H.: Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99 (2011).
71. Holten-Andersen, N., Harrington, M.J., Birkedal, H., Lee, B.P., Messersmith, P.B., Lee, K.Y.C., and Waite, J.H.: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. USA 108, 2651 (2011).
72. Klosterman, L. and Bettinger, C.: Calcium-mediated control of polydopamine film oxidation and iron chelation. Int. J. Mol. Sci. 18, 14 (2016).
73. Kropf, A.J., Bunker, B.A., Eisner, M., Moss, S.C., Zecca, L., Stroppolo, A., and Crippa, P.R.: X-ray absorption fine-structure spectroscopy studies of Fe sites in natural human neuromelanin and synthetic analogues. Biophys. J. 75, 3135 (1998).
74. Bardani, L., Bridelli, M., Carbucicchio, M., and Crippa, P.: Comparative Mössbauer and infrared analysis of iron-containing melanins. Biochim. Biophys. Acta – Gen. Subj. 716, 8 (1982).
75. Bridelli, M.G., Tampellini, D., and Zecca, L.: The structure of neuromelanin and its iron binding site studied by infrared spectroscopy. FEBS Lett. 457, 18 (1999).
76. Larsson, B. and Tjälve, H.: Studies on the mechanism of drug-binding to melanin. Biochem. Pharmacol. 28, 1181 (1979).
77. Sarna, T., Froncisz, W., and Hyde, J.S.: Cu2+ probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy. Nat. Melanin Arch. Biochem. Biophys. 202, 304 (1980).
78. Bruenger, F.W., Stover, B.J., and Atherton, D.R.: The incorporation of various metal ions into in vivo- and in vitro-produced melanin. Radiat. Res. 32, 1 (1967).
79. Kim, Y.J., Wu, W., Chun, S.-E., Whitacre, J.F., and Bettinger, C.J.: Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl. Acad. Sci. USA 110, 20912 (2013).
80. Povlich, L.K., Le, J., Kim, J., and Martin, D.C.: Poly(5,6-dimethoxyindole-2-carboxylic acid) (PDMICA): a melanin-like polymer with unique electrochromic and structural properties. Macromolecules 43, 3770 (2010).
81. Aime, S., Botta, M., and Camurati, I.: NMR studies of L-dopa melanin-manganese(II) complex in water solution. J. Inorg. Biochem. 36, 1 (1989).
82. Pierpont, C.G. and Lange, C.W.: The Chemistry of Transition Metal Complexes Containing Catechol and Semiquinone Ligands (John Wiley & Sons, Inc, New York, USA, 2007).
83. Ball, V., Nguyen, I., Haupt, M., Oehr, C., Arnoult, C., Toniazzo, V., and Ruch, D.: The reduction of Ag+ in metallic silver on pseudomelanin films allows for antibacterial activity but does not imply unpaired electrons. J. Colloid Interface Sci. 364, 359 (2011).
84. Schroeder, R.L., Double, K.L., and Gerber, J.P.: Using Sepia melanin as a PD model to describe the binding characteristics of neuromelanin – a critical review. J. Chem. Neuroanat. 64–65, 20 (2015).
85. Zucca, F.A., Segura-Aguilar, J., Ferrari, E., Muñoz, P., Paris, I., Sulzer, D., Sarna, T., Casella, L., and Zecca, L.: Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog. Neurobiol. (2015). In press.
86. Enochs, W.S., Sarna, T., Zecca, L., Riley, P.A., and Swartz, H.M.: The roles of neuromelanin, binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson's disease: a hypothesis. J. Neural Transm. – Park. Dis. Dement. Sect. 7, 83 (1994).
87. Sarna, T. and Swartz, H.M.: The Pigmentary System: Physiology and Pathophysiology (Wiley-Blac, Oxford, UK, 2006).
88. Shima, T., Sarna, T., Swartz, H.M., Stroppolo, A., Gerbasi, R., and Zecca, L.: Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic. Biol. Med. 23, 110 (1997).
89. Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., Stachelberger, H., Ben-Shachar, D., and Youdim, M.B.H.: Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J. Neurochem. 59, 1168 (1992).
90. Ben-Shachar, D., Riederer, P., and Youdim, M.B.H.: Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem. 57, 1609 (1991).
91. Youdim, M.B.H., Ben-Shachar, D., and Riederer, P.: Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration?. Acta Neurol. Scand. 80, 47 (1989).
92. Zecca, L., Tampellini, D., Gatti, A., Crippa, R., Eisner, M., Sulzer, D., Ito, S., Fariello, R., and Gallorini, M.: The neuromelanin of human substantia nigra and its interaction with metals. J. Neural Transm. 109, 663 (2002).
93. Dexter, D.T., Wells, F.R., Lee, A.J., Agid, F., Agid, Y., Jenner, P., and Marsden, C.D.: Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J. Neurochem. 52, 1830 (1989).
94. Hirsch, E.C., Brandel, J-P., Galle, P., Javoy-Agid, F., and Agid, Y.: Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. J. Neurochem. 56, 446 (1991).
95. Zecca, L., Gallorini, M., Schünemann, V., Trautwein, A.X., Gerlach, M., Riederer, P., Vezzoni, P., and Tampellini, D.: Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J. Neurochem. 76, 1766 (2001).
96. Wünsche, J., Cardenas, L., Rosei, F., Cicoira, F., Gauvin, R., Graeff, C.F.O., Poulin, S., Pezzella, A., and Santato, C.: In situ formation of dendrites in eumelanin thin films between gold electrodes. Adv. Funct. Mater. 23, 5591 (2013).
97. Di Mauro, E., Carpentier, O., Yáñez Sánchez, S.I., Ignoumba Ignoumba, N., Lalancette-Jean, M., Lefebvre, J., Zhang, S., Graeff, C.F.O., Cicoira, F., and Santato, C.: Resistive switching controlled by the hydration level in thin films of the biopigment eumelanin. J. Mater. Chem. C 4, 9544 (2016).
98. Valov, I., Waser, R., Jameson, J.R., and Kozicki, M.N.: Electrochemical metallization memories – fundamentals, applications, prospects. Nanotechnology 22, 289502 (2011).
99. Bettinger, C.J., Bruggeman, J.P., Misra, A., Borenstein, J.T., and Langer, R.: Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30, 3050 (2009).
100. Yu, B., Liu, J., Liu, S., and Zhou, F.: Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem. Commun. 46, 5900 (2010).
101. Farnad, N., Farhadi, K., and Voelcker, N.H.: Polydopamine nanoparticles as a new and highly selective biosorbent for the removal of copper(II) ions from aqueous solutions. Water Air Soil Pollut. 223, 3535 (2012).
102. De Marchi, F., Cui, D., Lipton-Duffin, J., Santato, C., MacLeod, J.M., and Rosei, F.: Self-assembly of indole-2-carboxylic acid at graphite and gold surfaces. J. Chem. Phys. 142, 101923 (2015).
103. Nam, H.J., Kim, B., Ko, M.J., Jin, M., Kim, J.M., and Jung, D.-Y.: A new mussel-inspired polydopamine sensitizer for dye-sensitized solar cells: controlled synthesis and charge transfer. Chem. – Eur. J. 18, 14000 (2012).
104. Lee, H., Scherer, N.F., and Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999 (2006).
105. Yan, J., Yang, L., Lin, M-F., Ma, J., Lu, X., and Lee, P.S.: Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 9, 596 (2013).
106. Yao, X., Zhao, C., Kong, J., Wu, H., Zhou, D., and Lu, X.: Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries. Chem. Commun. 50, 14597 (2014).
107. Yue, Q., Wang, M., Sun, Z., Wang, C., Wang, C., Deng, Y., and Zhao, D.: A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures. J. Mater. Chem. B 1, 6085 (2013).
108. Si, J. and Yang, H.: Preparation and characterization of bio-compatible Fe3O4@polydopamine spheres with core/shell nanostructure. Mater. Chem. Phys. 128, 519 (2011).
109. Gu, X., Zhang, Y., Sun, H., Song, X., Fu, C., and Dong, P.: Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. J. Nanomater. 2015, 1 (2015).
110. Liu, S., Fu, J., Wang, M., Yan, Y., Xin, Q., Cai, L., and Xu, Q.: Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts. J. Colloid Interface Sci. 469, 69 (2016).
111. Zhang, L., Li, L., and Dang, Z.M.: Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation. J. Colloid Interface Sci. 463, 266 (2016).
112. Zhang, M., He, X., Chen, L., and Zhang, Y.: Preparation of IDA-Cu functionalized core-satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood. J. Mater. Chem. 20, 10696 (2010).
113. Lin, L-S., Cong, Z-X., Cao, J-B., Ke, K-M., Peng, Q-L., Gao, J., Yang, H-H., Liu, G., and Chen, X.: Multifunctional Fe3O4@polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8, 3876 (2014).
114. Ma, X., Ding, C., Yao, X., and Jia, L.: Ethylene glycol assisted preparation of Ti4+-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins. Anal. Chim. Acta 929, 23 (2016).
115. Oliveira, H.P., Graeff, C.F., Brunello, C.A., and Guerra, E.M.: Electrochromic and conductivity properties: a comparative study between melanin-like/V2O5·nH2O and polyaniline/V2O5·nH2O hybrid materials. J. Non Cryst. Solids 273, 193 (2000).
116. Lee, J-W., Cho, H-B., Nakayama, T., Sekino, T., Tanaka, S-I., Minato, K., Ueno, T., Suzuki, T., Suematsu, H., Tokoi, Y., and Niihara, K.: Dye-sensitized solar cells using purified squid ink nanoparticles coated on TiO2 nanotubes/nanoparticles. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J. Ceram. Soc. Japan. 121, 123 (2013).
117. Feng, J-J., Zhang, P-P., Wang, A-J., Liao, Q-C., Xi, J-L., and Chen, J-R.: One-step synthesis of monodisperse polydopamine-coated silver core–shell nanostructures for enhanced photocatalysis. New J. Chem. 36, 148 (2012).
118. Mao, W-X., Lin, X-J., Zhang, W., Chi, Z-X., Lyu, R-W., Cao, A-M., and Wan, L-J.: Core–shell structured TiO2 @polydopamine for highly active visible-light photocatalysis. Chem. Commun. 52, 7122 (2016).
119. Loget, G., Yoo, J.E., Mazare, A., Wang, L., and Schmuki, P.: Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochem. Commun. 52, 41 (2015).
120. Soliveri, G., Pifferi, V., Panzarasa, G., Ardizzone, S., Cappelletti, G., Meroni, D., Sparnacci, K., and Falciola, L.: Self-cleaning properties in engineered sensors for dopamine electroanalytical detection. Analyst 140, 1486 (2015).
121. Panzarasa, G., Soliveri, G., Sparnacci, K., and Ardizzone, S.: Patterning of polymer brushes made easy using titanium dioxide: direct and remote photocatalytic lithography. Chem. Commun. 51, 7313 (2015).
122. Auffan, M., Pedeutour, M., Rose, J., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C., Botta, C., Chaurand, P., Labille, J., and Bottero, J.Y.: Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol. 44, 2689 (2010).
123. Serpone, N., Dondi, D., and Albini, A.: Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorganica Chim. Acta. 360, 794 (2007).
124. Setyawati, M.I., Tay, C.Y., Chia, S.L., Goh, S.L., Fang, W., Neo, M.J., Chong, H.C., Tan, S.M., Loo, S.C.J., Ng, K.W., Xie, J.P., Ong, C.N., Tan, N.S., and Leong, D.T.: Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 4, 1673 (2013).
125. Carlotti, M.E., Ugazio, E., Sapino, S., Fenoglio, I., Greco, G., and Fubini, B.: Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radic. Res. 43, 312 (2009).
126. Kiss, B., Bíró, T., Czifra, G., Tóth, B.I., Kertész, Z., Szikszai, Z., Kiss, Á.Z., Juhász, I., Zouboulis, C.C., and Hunyadi, J.: Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp. Dermatol. 17, 659 (2008).
127. Senzui, M., Tamura, T., Miura, K., Ikarashi, Y., Watanabe, Y., and Fujii, M.: Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro. J. Toxicol. Sci. 35, 107 (2010).
128. Newman, M.D., Stotland, M., and Ellis, J.I.: The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J. Am. Acad. Dermatol. 61, 685 (2009).
129. Vitiello, G., Pezzella, A., Zanfardino, A., Varcamonti, M., Silvestri, B., Costantini, A., Branda, F., and Luciani, G.: Titania as a driving agent for DHICA polymerization: a novel strategy for the design of bioinspired antimicrobial nanomaterials. J. Mater. Chem. B 3, 2808 (2015).
130. Pezzella, A., Capelli, L., Costantini, A., Luciani, G., Tescione, F., Silvestri, B., Vitiello, G., and Branda, F.: Towards the development of a novel bioinspired functional material: synthesis and characterization of hybrid TiO2/DHICA-melanin nanoparticles. Mater. Sci. Eng. C 33, 347 (2012).
131. Lee, C.B., Kang, B.S., Benayad, A., Lee, M.J., Ahn, S-E., Kim, K.H., Stefanovich, G., Park, Y., and Yoo, I.K.: Effects of metal electrodes on the resistive memory switching property of NiO thin films. Appl. Phys. Lett. 93, 42115 (2008).
132. Vitiello, G., Pezzella, A., Calcagno, V., Silvestri, B., Raiola, L., D'Errico, G., Costantini, A., Branda, F., and Luciani, G.: 5,6-Dihydroxyindole-2-carboxylic acid-TiO2 charge transfer complexes in the radical polymerization of melanogenic precursor(s). J. Phys. Chem. C 120, 6262 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 422
Total number of PDF views: 359 *
Loading metrics...

Abstract views

Total abstract views: 1381 *
Loading metrics...

* Views captured on Cambridge Core between 11th May 2017 - 24th March 2018. This data will be updated every 24 hours.