Skip to main content

Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities

  • Heng-Jui Liu (a1), Wen-I Liang (a1), Ying-Hao Chu (a1), Haimei Zheng (a2) and Ramamoorthy Ramesh (a3)...

Self-assembled vertical heteroepitaxial nanostructures (VHN) in the complex oxide field have fascinated scientists for decades because they provide degrees of freedom to explore in condensed matter physics and design-coupled multifunctionlities. Recently, of particular interest is the perovskite-spinel-based VHN, covering a wide spectrum of promising applications. In this review, fabrication of VHN, their growth mechanism, control, and resulting novel multifunctionalities are discussed thoroughly, providing researchers a comprehensive blueprint to construct promising VHN. Following the fabrication section, the state-of-the-art design concepts for multifunctionalities are proposed and reviewed by suitable examples. By summarizing the outlook of this field, we are excitedly expecting this field to rise with significant contributions ranging from scientific value to practical applications in the foreseeable future.

Corresponding author
Address all correspondence to Ying-Hao Chu
Hide All
1.MacManus-Driscoll J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).
2.Nan C.-W., Bichurin M.I., Dong S., Viehland D., and Srinivasan G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).
3.Ramesh R. and Spaldin N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
4.Schlom D.G., Chen L.-Q., Pan X., Schmehl A., and Zurbuchen M.A.: A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429 (2008).
5.Newnham R.E. and Trolier-McKinstry S.: Crystals and composites. J. Appl. Crystallogr. 23, 447 (1990).
6.Lebedev O.I., Verbeeck J., Van Tendeloo G., Shapoval O., Belenchuk A., Moshnyaga V., Damashcke B., and Samwer K.: Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1−x:(MgO)x composite films. Phys. Rev. B 66, 104421 (2002).
7.Moshnyaga V., Damaschke B., Shapoval O., Belenchuk A., Faupel J., Lebedev O.I., Verbeeck J., van Tendeloo G., Mucksch M., Tsurkan V., Tidecks R., and Samwer K.: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1−x:(MgO)x nanocomposite films. Nat. Mater. 2, 247 (2003).
8.Zheng H., Straub F., Zhan Q., Yang P.L., Hsieh W.K., Zavaliche F., Chu Y.-H., Dahmen U., and Ramesh R.: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006).
9.Zheng H., Wang J., Lofland S.E., Ma Z., Mohaddes-Ardabili L., Zhao T., Salamanca-Riba L., Shinde S.R., Ogale S.B., Bai F., Viehland D., Jia Y., Schlom D.G., Wuttig M., Roytburd A., and Ramesh R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).
10.Zheng H., Zhan Q., Zavaliche F., Sherburne M., Straub F., Cruz M.P., Chen L.-Q., Dahmen U., and Ramesh R.: Controlling self-assembled Perovskite-spinel nanostructures. Nano Lett. 6, 1401 (2006).
11.Chen A., Bi Z., Tsai C.-F., Lee J., Su Q., Zhang X., Jia Q., MacManus-Driscoll J.L., and Wang H.: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).
12.Yang H., Wang H., Yoon J., Wang Y., Jain M., Feldmann D.M., Dowden P.C., MacManus-Driscoll J.L., and Jia Q.: Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794 (2009).
13.HarringtonSophie A., Zhai J., Denev S., Gopalan V., Wang H., Bi Z., RedfernSimon A.T., Baek S.-H., Bark C.W., Eom C.-B., Jia Q., Vickers M.E., and MacManus-Driscoll J.L.: Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nano 6, 491 (2011).
14.Liao S.-C., Tsai P.-Y., Liang C.-W., Liu H.-J., Yang J.-C., Lin S.-J., Lai C.-H., and Chu Y.-H.: Misorientation control and functionality design of nanopillars in self-assembled Perovskite − Spinel heteroepitaxial nanostructures. ACS Nano 5, 4118 (2011).
15.Liu H.-J., Chen L.-Y., He Q., Liang C.-W., Chen Y.-Z., Chien Y.-S., Hsieh Y.-H., Lin S.-J., Arenholz E., Luo C.-W., Chueh Y.-L., Chen Y.-C., and Chu Y.-H.: Epitaxial photostriction–magnetostriction coupled self-assembled nanostructures. ACS Nano 6, 6952 (2012).
16.Aimon N.M., Kim D.H., Choi H.K., and Ross C.A.: Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100, 092901 (2012).
17.Comes R., Khokhlov M., Liu H., Lu J., and Wolf S.A.: Magnetic anisotropy in composite CoFe2O4–BiFeO3 ultrathin films grown by pulsed-electron deposition. J. Appl. Phys. 111, 07D914 (2012).
18.Staruch M., Hires D., Chen A., Bi Z., Wang H., and Jain M.: Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3:MgO composite films. J. Appl. Phys. 110, 113913 (2011).
19.Hsieh Y.-H., Kuo H.-H., Liao S.-C., Liu H.-J., Chen Y.-J., Lin H.-J., Chen C.-T., Lai C.-H., Zhan Q., Chueh Y.-L., and Chu Y.-H.: Tuning the formation and functionalities of ultrafine CoFe2O4 nanocrystals via interfacial coherent strain. Nanoscale 5, 6219 (2013).
20.Wu D.: Nucleation theory. Solid State Phys. 50, 37 (1996).
21.Srinivasan G., Rasmussen E.T., Gallegos J., Srinivasan R., Bokhan Y.I., and Laletin V.M.: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).
22.Yan L., Bai F., Li J., and Viehland D.: Nanostructures in perovskite–ferrite two-phase composite epitaxial thin films. Phil. Mag. 90, 103 (2009).
23.Yan L., Yang Y., Wang Z., Xing Z., Li J., and Viehland D.: Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 44, 5080 (2009).
24.Stern I., He J., Zhou X., Silwal P., Miao L., Vargas J.M., Spinu L., and Kim D.H.: Role of spinel substrate in the morphology of BiFeO3–CoFe2O4 epitaxial nanocomposite films. Appl. Phys. Lett. 99, 082908 (2011).
25.Levin I., Li J., Slutsker J., and Roytburd A.L.: Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18, 2044 (2006).
26.Artemev A., Slutsker J., and Roytburd A.L.: Phase field modeling of self-assembling nanostructures in constrained films. Acta Mater. 53, 3425 (2005).
27.MacManus-Driscoll J.L., Zerrer P., Wang H., Yang H., Yoon J., Fouchet A., Yu R., Blamire M.G., and Jia Q.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).
28.Mathur N.: Materials science: a desirable wind up. Nature 454, 591 (2008).
29.Nan C.-W., Liu G., Lin Y., and Chen H.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).
30.Wang Y., Hu J., Lin Y., and Nan C.-W.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010).
31.Sun K.H. and Kim Y.Y.: Design of magnetoelectric multiferroic heterostructures by topology optimization. J. Phys. D: Appl. Phys. 44, 185003 (2011).
32.Caruntu G., Yourdkhani A., Vopsaroiu M., and Srinivasan G.: Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale 4, 3218 (2012).
33.Ren S.Q., Weng L.Q., Song S.H., Li F., Wan J.G., and Zeng M.: BaTiO3/CoFe2O4 particulate composites with large high frequency magnetoelectric response. J. Mater. Sci. 40, 4375 (2005).
34.Ramanaa M.V., Reddy N.R., Sreenivasulu G., Kumar K.V.S., Murty B.S., and Murthy V.R.K.: Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4−δ/PbZr0.52Ti0.48O3 composites—dielectric, piezoelectric and magnetic properties. Curr. Appl. Phys. 9, 1134 (2009).
35.Wu D., Gong W., Deng H., and Li M.: Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing. J. Phys. D: Appl. Phys. 40, 5002 (2007).
36.Zavaliche F., Zheng H., Mohaddes-Ardabili L., Yang S.Y., Zhan Q., Shafer P., Reilly E., Chopdekar R., Jia Y., Wright P., Schlom D.G., Suzuki Y., and Ramesh R.: Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 (2005).
37.Slutsker J., Levin I., Li J., Artemev A., and Roytburd A.L.: Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73, 184127 (2006).
38.Landau L.D. and Liftshitz E.M.: Electrodynamics of Continuous Media (Pergamon Press, Oxford, 119, 1960).
39.Li J., Levin I., Slutsker J., Provenzano V., Schenck P.K., Ramesh R., Ouyang J., and Roytburd A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).
40.Tsai C.Y., Chen H.R., Chang F.C., Tsai W.C., Cheng H.M., Chu Y.-H., Lai C.H., and Hsieh W.F.: Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 102, 132905 (2013).
41.Ren S. and Wuttig M.: Spinodally synthesized magnetoelectric. Appl. Phys. Lett. 91, 083501 (2007).
42.Wan J.G., Wang X.W., Wu Y.J., Zeng M., Wang Y., Jiang H., Zhou W.Q., Wang G.H., and Liu J.-M.: Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol–gel process. Appl. Phys. Lett. 86, 122501 (2005).
43.Zhang J., Fu H., Lu W., Dai J., and Chan H.L.W.: Nanoscale free-standing magnetoelectric heteropillars. Nanoscale 5, 6747 (2013).
44.Crane S.P., Bihler C., Brandt M.S., Goennenwein S.T.B., Gajek M., and Ramesh R.: Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures. J. Magn. Magn. Mater. 321, L5 (2009).
45.Zhan Q., Yu R., Crane S.P., Zheng H., Kisielowski C., and Ramesh R.: Structure and interface chemistry of perovskite–spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).
46.Chu Y.-H., Zhan Q., Martin L.W., Cruz M.P., Yang P.L., Pabst G.W., Zavaliche F., Yang S.Y., Zhang J.X., Chen L.Q., Schlom D.G., Lin I.N., Wu T.B., and Ramesh R.: Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307 (2006).
47.Pabst G.W., Martin L.W., Chu Y.-H., and Ramesh R.: Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007).
48.Yan L., Xing Z., Wang Z., Wang T., Lei G., Li J., and Viehland D.: Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3–CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).
49.Oh Y.S., Crane S., Zheng H., Chu Y.-H., Ramesh R., and Kim K.H.: Quantitative determination of anisotropic magnetoelectric coupling in BiFeO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 97, 052902 (2010).
50.Zavaliche F., Zhao T., Zheng H., Straub F., Cruz M.P., Yang P.L., Hao D., and Ramesh R.: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).
51.Zhao T., Scholl A., Zavaliche F., Zheng H., Barry M., Doran A., Lee K., Cruz M.P., and Ramesh R.: Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures. Appl. Phys. Lett. 90, 123104 (2007).
52.Chen Y.-J., Hsieh Y.-H., Liao S.-C., Hu Z., Huang M.-J., Kuo W.-C., Chin Y.-Y., Uen T.-M., Juang J.-Y., Lai C.-H., Lin H.-J., Chen C.-T., and Chu Y.-H.: Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. Nanoscale 5, 4449 (2013).
53.Dix N., Muralidharan R., Guyonnet J., Warot-Fonrose B., Varela M., Paruch P., Sánchez F., and Fontcuberta J.: On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures. Appl. Phys. Lett. 95, 062907 (2009).
54.Kalinin S.V., Morozovska A.N., Chen L.Q., and Rodriguez B.J.: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).
55.Rodriguez B.J., Jesse S., Baddorf A.P., Zhao T., Chu Y.-H., Ramesh R., Eliseev E.A., Morozovska A.N., and Kalinin S.V.: Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).
56.Poosanaas P., Tonooka K., and Uchino K.: Photostrictive actuators. Mechatronics 10, 467 (2000).
57.Uchino K. and Aizawa M.: Photostrictive actuator using PLZT ceramics. Japan. J. Appl. Phys. 24S3, 139 (1985).
58.Schmising C.v.K., Bargheer M., Kiel M., Zhavoronkov N., Woerner M., Elsaesser T., Vrejoiu I., Hesse D., and Alexe M.: Strain propagation in nanolayered perovskites probed by ultrafast x-ray diffraction. Phys. Rev. B 73, 212202 (2006).
59.Schmising C.v.K., Bargheer M., Kiel M., Zhavoronkov N., Woerner M., Elsaesser T., Vrejoiu I., Hesse D., and Alexe M.: Coupled ultrafast lattice and polarization dynamics in ferroelectric nanolayers. Phys. Rev. Lett. 98, 257601 (2007).
60.Schmising C.v.K., Harpoeth A., Zhavoronkov N., Ansari Z., Aku-Leh C., Woerner M., Elsaesser T., Bargheer M., Schmidbauer M., Vrejoiu I., Hesse D., and Alexe M.: Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404R (2008).
61.Schmising C.v.K., Bargheer M., Kiel M., Zhavoronkov N., Woerner M., Elsaesser T., Vrejoiu I., Hesse D., and Alexe M.: Ultrafast structure and polarization dynamics in nanolayered perovskites studied by femtosecond X-ray diffraction. J. Phys.: Conf. Ser. 92, 012177 (2007).
62.Driza N., Blanco-Canosa S., Bakr M., Soltan S., Khalid M., Mustafa L., Kawashima K., Christiani G., Habermeier H.U., Khaliullin G., Ulrich C., Le Tacon M., and Keimer B.: Long-range transfer of electron–phonon coupling in oxide superlattices. Nat. Mater. 11, 675 (2012).
63.Heinze S., Habermeier H.-U., Cristiani G., Canosa S.B., Tacon M.L., and Keimer B.: Thermoelectric properties of YBa2Cu3O7−δ–La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 101, 131603 (2012).
64.Bednorz J.G. and Müller K.A.: Possible high T C superconductivity in the Ba−La−Cu−O system. Z. Phys. B: Condens. Matter 64, 189 (1986).
65.Larbalestier D., Gurevich A., Feldmann D.M., and Polyanskii A.: High-T C superconducting materials for electric power applications. Nature 414, 368 (2001).
66.Dam B., Huijbregtse J.M., Klaassen F.C., van der Geest R.C.F., Doornbos G., Rector J.H., Testa A.M., Freisem S., Martinez J.C., Stauble-Pumpin B., and Griessen R.: Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films. Nature 399, 439 (1999).
67.Matsushita T.: Flux pinning in superconducting 123 materials. Supercond. Sci. Technol. 13, 730 (2000).
68.MacManus-Driscoll J.L., Foltyn S.R., Jia Q.X., Wang H., Serquis A., Civale L., Maiorov B., Hawley M.E., Maley M.P., and Peterson D.E.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x + BaZrO3. Nat. Mater. 3, 439 (2004).
69.Haugan T., Barnes P.N., Wheeler R., Meisenkothen F., and Sumption M.: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature 430, 867 (2004).
70.Goyal A., Kang S., Leonard K.J., Martine P.M., Gapud A.A., Varela M., Paranthaman M., Ijaduola A.O., Specht E.D., Thompson j.R., Chrhten D.K., Pennycook S.J., and List F.A.: Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films. Supercond. Sci. Technol. 18, 1533 (2005).
71.Lee S., Jiang J., Zhang Y., Bark C.W., Weiss J.D., Tarantini C., Nelson C.T., Jang H.W., Folkman C.M., Baek S.H., Polyanskii A., Abraimov D., Yamamoto A., Park J.W., Pan X.Q., Hellstrom E.E., Larbalestier D.C., and Eom C.B.: Template engineering of co-doped BaFe2As2 single-crystal thin films. Nat. Mater. 9, 397 (2010).
72.Lee S., Tarantini C., Gao P., Jiang J., Weiss J.D., Kametani F., Folkman C.M., Zhang Y., Pan X.Q., Hellstrom E.E., Larbalestier D.C., and Eom C.B.: Artificially engineered superlattices of pnictide superconductors. Nat. Mater. 12, 392 (2013).
73.Callister W.D.J.: Materials Science and Engineering: An Introduction, 7th ed. (Wiley, 2006) p. 110,129.
74.Dagotto E.: Complexity in strongly correlated electronic systems. Science 309, 257 (2005).
75.Mannhart J. and Schlom D.G.: Oxide interfaces—an opportunity for electronics. Science 327, 1607 (2010).
76.Liang W.-I., Liu Y., Liao S.-C., Wang W.-C., Liu H.-J., Lin H.-J., Chen C.-T., Lai C.-H., Borisevich A., Arenholz E., Li J., and Chu Y.-H.: Design magnetoelectric coupling in a self-assembled epitaxial nano-composite via chemical interaction. J. Mater. Chem. C, 2, 811 (2014)
77.Hankare P.P., Patil R.P., Sankpal U.B., Jadhav S.D., Mulla I.S., Jadhav K.M., and Chougule B.K.: Magnetic and dielectric properties of nanophase manganese-substituted lithium ferrite. J. Magn. Magn. Mater. 321, 3270 (2009).
78.Zener C.: Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951).
79.Jin S., Tiefel T.H., McCormack M., Fastnacht R.A., Ramesh R., and Chen L.H.: Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413 (1994).
80.Snyder G.J., Hiskes R., DiCarolis S., Beasley M.R., and Geballe T.H.: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996).
81.Gross R., Alff L., Büchner B., Freitag B.H., Höfener C., Klein J., Lu Y., Mader W., Philipp J.B., Rao M.S.R., Reutler P., Ritter S., Thienhaus S., Uhlenbruck S., and Wiedenhorst B.: Physics of grain boundaries in the colossal magnetoresistance manganites. J. Magn. Magn. Mater. 211, 150 (2000).
82.Huang Y.H., Karppinen M., Yamauchi H., and Goodenough J.B.: Effect of high-pressure annealing on magnetoresistance in manganese perovskites. J. Appl. Phys. 98, 033911 (2005).
83.Hwang H.Y., Cheong S.W., Ong N.P., and Batlogg B.: Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996).
84.Liu H.-J., Tra V.-T., Chen Y.-J., Huang R., Duan C.-G., Hsieh Y.-H., Lin H.-J., Lin J.-Y., Chen C.-T., Ikuhara Y., and Chu Y.-H.: Large magnetoresistance in magnetically coupled SrRuO3–CoFe2O4 self-assembled nanostructures. Adv. Mater. 25, 4753 (2013).
85.Pokropivny V.V. and Skorokhod V.V.: New dimensionality classifications of nanostructures. Physica E 40, 2521 (2008).
86.Hsieh Y.-H., Liou J.-M., Huang B.-C., Liang C.-W., He Q., Zhan Q., Chiu Y.-P., Chen Y.-C., and Chu Y.-H.: Local conduction at the BiFeO3–CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).
87.Vidal F., Schio P., Keller N., Zheng Y., Demaille D., Bonilla F.J., Milano J., and de Oliveira A.J.A.: Magneto-optical study of slanted Co nanowires embedded in CeO2/SrTiO3(0 01). Physica B 407, 3070 (2012).
88.Vidal F., Zheng Y., Milano J., Demaille D., Schio P., Fonda E., and Vodungbo B.: Nanowires formation and the origin of ferromagnetism in a diluted magnetic oxide. Appl. Phys. Lett. 95, 152510 (2009).
89.Comes R., Liu H., Khokhlov M., Kasica R., Lu J., and Wolf S.A.: Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012).
90.Lee W., Han H., Lotnyk A., Schubert M.A., Senz S., Alexe M., Hesse D., Baik S., and Gösele U.: Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density. Nat. Nanotechnol. 3, 402 (2008).
91.Wolf S.A., Jiwei L., Stan M.R., Chen E., and Treger D.M.: The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98, 2155 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 4
Total number of PDF views: 62 *
Loading metrics...

Abstract views

Total abstract views: 317 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd January 2018. This data will be updated every 24 hours.