Skip to main content
×
Home
    • Aa
    • Aa

Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities

  • Heng-Jui Liu (a1), Wen-I Liang (a1), Ying-Hao Chu (a1), Haimei Zheng (a2) and Ramamoorthy Ramesh (a3)...
Abstract
Abstract

Self-assembled vertical heteroepitaxial nanostructures (VHN) in the complex oxide field have fascinated scientists for decades because they provide degrees of freedom to explore in condensed matter physics and design-coupled multifunctionlities. Recently, of particular interest is the perovskite-spinel-based VHN, covering a wide spectrum of promising applications. In this review, fabrication of VHN, their growth mechanism, control, and resulting novel multifunctionalities are discussed thoroughly, providing researchers a comprehensive blueprint to construct promising VHN. Following the fabrication section, the state-of-the-art design concepts for multifunctionalities are proposed and reviewed by suitable examples. By summarizing the outlook of this field, we are excitedly expecting this field to rise with significant contributions ranging from scientific value to practical applications in the foreseeable future.

Copyright
Corresponding author
Address all correspondence to Ying-Hao Chu atyhc@cc.nctu.edu.tw
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. J.L. MacManus-Driscoll : Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).

2. C.-W. Nan , M.I. Bichurin , S. Dong , D. Viehland , and G. Srinivasan : Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

3. R. Ramesh and N.A. Spaldin : Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

4. D.G. Schlom , L.-Q. Chen , X. Pan , A. Schmehl , and M.A. Zurbuchen : A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429 (2008).

5. R.E. Newnham and S. Trolier-McKinstry : Crystals and composites. J. Appl. Crystallogr. 23, 447 (1990).

6. O.I. Lebedev , J. Verbeeck , G. Van Tendeloo , O. Shapoval , A. Belenchuk , V. Moshnyaga , B. Damashcke , and K. Samwer : Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1−x:(MgO)x composite films. Phys. Rev. B 66, 104421 (2002).

7. V. Moshnyaga , B. Damaschke , O. Shapoval , A. Belenchuk , J. Faupel , O.I. Lebedev , J. Verbeeck , G. van Tendeloo , M. Mucksch , V. Tsurkan , R. Tidecks , and K. Samwer : Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1−x:(MgO)x nanocomposite films. Nat. Mater. 2, 247 (2003).

8. H. Zheng , F. Straub , Q. Zhan , P.L. Yang , W.K. Hsieh , F. Zavaliche , Y.-H. Chu , U. Dahmen , and R. Ramesh : Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006).

9. H. Zheng , J. Wang , S.E. Lofland , Z. Ma , L. Mohaddes-Ardabili , T. Zhao , L. Salamanca-Riba , S.R. Shinde , S.B. Ogale , F. Bai , D. Viehland , Y. Jia , D.G. Schlom , M. Wuttig , A. Roytburd , and R. Ramesh : Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).

10. H. Zheng , Q. Zhan , F. Zavaliche , M. Sherburne , F. Straub , M.P. Cruz , L.-Q. Chen , U. Dahmen , and R. Ramesh : Controlling self-assembled Perovskite-spinel nanostructures. Nano Lett. 6, 1401 (2006).

11. A. Chen , Z. Bi , C.-F. Tsai , J. Lee , Q. Su , X. Zhang , Q. Jia , J.L. MacManus-Driscoll , and H. Wang : Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).

12. H. Yang , H. Wang , J. Yoon , Y. Wang , M. Jain , D.M. Feldmann , P.C. Dowden , J.L. MacManus-Driscoll , and Q. Jia : Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794 (2009).

14. S.-C. Liao , P.-Y. Tsai , C.-W. Liang , H.-J. Liu , J.-C. Yang , S.-J. Lin , C.-H. Lai , and Y.-H. Chu : Misorientation control and functionality design of nanopillars in self-assembled Perovskite − Spinel heteroepitaxial nanostructures. ACS Nano 5, 4118 (2011).

16. N.M. Aimon , D.H. Kim , H.K. Choi , and C.A. Ross : Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100, 092901 (2012).

17. R. Comes , M. Khokhlov , H. Liu , J. Lu , and S.A. Wolf : Magnetic anisotropy in composite CoFe2O4–BiFeO3 ultrathin films grown by pulsed-electron deposition. J. Appl. Phys. 111, 07D914 (2012).

18. M. Staruch , D. Hires , A. Chen , Z. Bi , H. Wang , and M. Jain : Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3:MgO composite films. J. Appl. Phys. 110, 113913 (2011).

19. Y.-H. Hsieh , H.-H. Kuo , S.-C. Liao , H.-J. Liu , Y.-J. Chen , H.-J. Lin , C.-T. Chen , C.-H. Lai , Q. Zhan , Y.-L. Chueh , and Y.-H. Chu : Tuning the formation and functionalities of ultrafine CoFe2O4 nanocrystals via interfacial coherent strain. Nanoscale 5, 6219 (2013).

21. G. Srinivasan , E.T. Rasmussen , J. Gallegos , R. Srinivasan , Y.I. Bokhan , and V.M. Laletin : Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).

23. L. Yan , Y. Yang , Z. Wang , Z. Xing , J. Li , and D. Viehland : Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 44, 5080 (2009).

24. I. Stern , J. He , X. Zhou , P. Silwal , L. Miao , J.M. Vargas , L. Spinu , and D.H. Kim : Role of spinel substrate in the morphology of BiFeO3–CoFe2O4 epitaxial nanocomposite films. Appl. Phys. Lett. 99, 082908 (2011).

25. I. Levin , J. Li , J. Slutsker , and A.L. Roytburd : Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18, 2044 (2006).

26. A. Artemev , J. Slutsker , and A.L. Roytburd : Phase field modeling of self-assembling nanostructures in constrained films. Acta Mater. 53, 3425 (2005).

27. J.L. MacManus-Driscoll , P. Zerrer , H. Wang , H. Yang , J. Yoon , A. Fouchet , R. Yu , M.G. Blamire , and Q. Jia : Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).

28. N. Mathur : Materials science: a desirable wind up. Nature 454, 591 (2008).

29. C.-W. Nan , G. Liu , Y. Lin , and H. Chen : Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).

30. Y. Wang , J. Hu , Y. Lin , and C.-W. Nan : Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010).

31. K.H. Sun and Y.Y. Kim : Design of magnetoelectric multiferroic heterostructures by topology optimization. J. Phys. D: Appl. Phys. 44, 185003 (2011).

32. G. Caruntu , A. Yourdkhani , M. Vopsaroiu , and G. Srinivasan : Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale 4, 3218 (2012).

33. S.Q. Ren , L.Q. Weng , S.H. Song , F. Li , J.G. Wan , and M. Zeng : BaTiO3/CoFe2O4 particulate composites with large high frequency magnetoelectric response. J. Mater. Sci. 40, 4375 (2005).

35. D. Wu , W. Gong , H. Deng , and M. Li : Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing. J. Phys. D: Appl. Phys. 40, 5002 (2007).

36. F. Zavaliche , H. Zheng , L. Mohaddes-Ardabili , S.Y. Yang , Q. Zhan , P. Shafer , E. Reilly , R. Chopdekar , Y. Jia , P. Wright , D.G. Schlom , Y. Suzuki , and R. Ramesh : Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 (2005).

37. J. Slutsker , I. Levin , J. Li , A. Artemev , and A.L. Roytburd : Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73, 184127 (2006).

40. C.Y. Tsai , H.R. Chen , F.C. Chang , W.C. Tsai , H.M. Cheng , Y.-H. Chu , C.H. Lai , and W.F. Hsieh : Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 102, 132905 (2013).

41. S. Ren and M. Wuttig : Spinodally synthesized magnetoelectric. Appl. Phys. Lett. 91, 083501 (2007).

42. J.G. Wan , X.W. Wang , Y.J. Wu , M. Zeng , Y. Wang , H. Jiang , W.Q. Zhou , G.H. Wang , and J.-M. Liu : Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol–gel process. Appl. Phys. Lett. 86, 122501 (2005).

44. S.P. Crane , C. Bihler , M.S. Brandt , S.T.B. Goennenwein , M. Gajek , and R. Ramesh : Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures. J. Magn. Magn. Mater. 321, L5 (2009).

45. Q. Zhan , R. Yu , S.P. Crane , H. Zheng , C. Kisielowski , and R. Ramesh : Structure and interface chemistry of perovskite–spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).

46. Y.-H. Chu , Q. Zhan , L.W. Martin , M.P. Cruz , P.L. Yang , G.W. Pabst , F. Zavaliche , S.Y. Yang , J.X. Zhang , L.Q. Chen , D.G. Schlom , I.N. Lin , T.B. Wu , and R. Ramesh : Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307 (2006).

47. G.W. Pabst , L.W. Martin , Y.-H. Chu , and R. Ramesh : Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007).

48. L. Yan , Z. Xing , Z. Wang , T. Wang , G. Lei , J. Li , and D. Viehland : Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3–CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).

49. Y.S. Oh , S. Crane , H. Zheng , Y.-H. Chu , R. Ramesh , and K.H. Kim : Quantitative determination of anisotropic magnetoelectric coupling in BiFeO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 97, 052902 (2010).

50. F. Zavaliche , T. Zhao , H. Zheng , F. Straub , M.P. Cruz , P.L. Yang , D. Hao , and R. Ramesh : Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).

51. T. Zhao , A. Scholl , F. Zavaliche , H. Zheng , M. Barry , A. Doran , K. Lee , M.P. Cruz , and R. Ramesh : Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures. Appl. Phys. Lett. 90, 123104 (2007).

52. Y.-J. Chen , Y.-H. Hsieh , S.-C. Liao , Z. Hu , M.-J. Huang , W.-C. Kuo , Y.-Y. Chin , T.-M. Uen , J.-Y. Juang , C.-H. Lai , H.-J. Lin , C.-T. Chen , and Y.-H. Chu : Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. Nanoscale 5, 4449 (2013).

53. N. Dix , R. Muralidharan , J. Guyonnet , B. Warot-Fonrose , M. Varela , P. Paruch , F. Sánchez , and J. Fontcuberta : On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures. Appl. Phys. Lett. 95, 062907 (2009).

54. S.V. Kalinin , A.N. Morozovska , L.Q. Chen , and B.J. Rodriguez : Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).

55. B.J. Rodriguez , S. Jesse , A.P. Baddorf , T. Zhao , Y.-H. Chu , R. Ramesh , E.A. Eliseev , A.N. Morozovska , and S.V. Kalinin : Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).

56. P. Poosanaas , K. Tonooka , and K. Uchino : Photostrictive actuators. Mechatronics 10, 467 (2000).

62. N. Driza , S. Blanco-Canosa , M. Bakr , S. Soltan , M. Khalid , L. Mustafa , K. Kawashima , G. Christiani , H.U. Habermeier , G. Khaliullin , C. Ulrich , M. Le Tacon , and B. Keimer : Long-range transfer of electron–phonon coupling in oxide superlattices. Nat. Mater. 11, 675 (2012).

63. S. Heinze , H.-U. Habermeier , G. Cristiani , S.B. Canosa , M.L. Tacon , and B. Keimer : Thermoelectric properties of YBa2Cu3O7−δ–La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 101, 131603 (2012).

64. J.G. Bednorz and K.A. Müller : Possible high TC superconductivity in the Ba−La−Cu−O system. Z. Phys. B: Condens. Matter 64, 189 (1986).

65. D. Larbalestier , A. Gurevich , D.M. Feldmann , and A. Polyanskii : High-TC superconducting materials for electric power applications. Nature 414, 368 (2001).

66. B. Dam , J.M. Huijbregtse , F.C. Klaassen , R.C.F. van der Geest , G. Doornbos , J.H. Rector , A.M. Testa , S. Freisem , J.C. Martinez , B. Stauble-Pumpin , and R. Griessen : Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films. Nature 399, 439 (1999).

67. T. Matsushita : Flux pinning in superconducting 123 materials. Supercond. Sci. Technol. 13, 730 (2000).

68. J.L. MacManus-Driscoll , S.R. Foltyn , Q.X. Jia , H. Wang , A. Serquis , L. Civale , B. Maiorov , M.E. Hawley , M.P. Maley , and D.E. Peterson : Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x + BaZrO3. Nat. Mater. 3, 439 (2004).

69. T. Haugan , P.N. Barnes , R. Wheeler , F. Meisenkothen , and M. Sumption : Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature 430, 867 (2004).

70. A. Goyal , S. Kang , K.J. Leonard , P.M. Martine , A.A. Gapud , M. Varela , M. Paranthaman , A.O. Ijaduola , E.D. Specht , j.R. Thompson , D.K. Chrhten , S.J. Pennycook , and F.A. List : Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films. Supercond. Sci. Technol. 18, 1533 (2005).

71. S. Lee , J. Jiang , Y. Zhang , C.W. Bark , J.D. Weiss , C. Tarantini , C.T. Nelson , H.W. Jang , C.M. Folkman , S.H. Baek , A. Polyanskii , D. Abraimov , A. Yamamoto , J.W. Park , X.Q. Pan , E.E. Hellstrom , D.C. Larbalestier , and C.B. Eom : Template engineering of co-doped BaFe2As2 single-crystal thin films. Nat. Mater. 9, 397 (2010).

72. S. Lee , C. Tarantini , P. Gao , J. Jiang , J.D. Weiss , F. Kametani , C.M. Folkman , Y. Zhang , X.Q. Pan , E.E. Hellstrom , D.C. Larbalestier , and C.B. Eom : Artificially engineered superlattices of pnictide superconductors. Nat. Mater. 12, 392 (2013).

74. E. Dagotto : Complexity in strongly correlated electronic systems. Science 309, 257 (2005).

75. J. Mannhart and D.G. Schlom : Oxide interfaces—an opportunity for electronics. Science 327, 1607 (2010).

76. W.-I. Liang , Y. Liu , S.-C. Liao , W.-C. Wang , H.-J. Liu , H.-J. Lin , C.-T. Chen , C.-H. Lai , A. Borisevich , E. Arenholz , J. Li , and Y.-H. Chu : Design magnetoelectric coupling in a self-assembled epitaxial nano-composite via chemical interaction. J. Mater. Chem. C, 2, 811 (2014)

77. P.P. Hankare , R.P. Patil , U.B. Sankpal , S.D. Jadhav , I.S. Mulla , K.M. Jadhav , and B.K. Chougule : Magnetic and dielectric properties of nanophase manganese-substituted lithium ferrite. J. Magn. Magn. Mater. 321, 3270 (2009).

78. C. Zener : Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951).

79. S. Jin , T.H. Tiefel , M. McCormack , R.A. Fastnacht , R. Ramesh , and L.H. Chen : Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413 (1994).

80. G.J. Snyder , R. Hiskes , S. DiCarolis , M.R. Beasley , and T.H. Geballe : Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996).

81. R. Gross , L. Alff , B. Büchner , B.H. Freitag , C. Höfener , J. Klein , Y. Lu , W. Mader , J.B. Philipp , M.S.R. Rao , P. Reutler , S. Ritter , S. Thienhaus , S. Uhlenbruck , and B. Wiedenhorst : Physics of grain boundaries in the colossal magnetoresistance manganites. J. Magn. Magn. Mater. 211, 150 (2000).

82. Y.H. Huang , M. Karppinen , H. Yamauchi , and J.B. Goodenough : Effect of high-pressure annealing on magnetoresistance in manganese perovskites. J. Appl. Phys. 98, 033911 (2005).

83. H.Y. Hwang , S.W. Cheong , N.P. Ong , and B. Batlogg : Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996).

84. H.-J. Liu , V.-T. Tra , Y.-J. Chen , R. Huang , C.-G. Duan , Y.-H. Hsieh , H.-J. Lin , J.-Y. Lin , C.-T. Chen , Y. Ikuhara , and Y.-H. Chu : Large magnetoresistance in magnetically coupled SrRuO3–CoFe2O4 self-assembled nanostructures. Adv. Mater. 25, 4753 (2013).

85. V.V. Pokropivny and V.V. Skorokhod : New dimensionality classifications of nanostructures. Physica E 40, 2521 (2008).

86. Y.-H. Hsieh , J.-M. Liou , B.-C. Huang , C.-W. Liang , Q. He , Q. Zhan , Y.-P. Chiu , Y.-C. Chen , and Y.-H. Chu : Local conduction at the BiFeO3–CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).

87. F. Vidal , P. Schio , N. Keller , Y. Zheng , D. Demaille , F.J. Bonilla , J. Milano , and A.J.A. de Oliveira : Magneto-optical study of slanted Co nanowires embedded in CeO2/SrTiO3(0 01). Physica B 407, 3070 (2012).

88. F. Vidal , Y. Zheng , J. Milano , D. Demaille , P. Schio , E. Fonda , and B. Vodungbo : Nanowires formation and the origin of ferromagnetism in a diluted magnetic oxide. Appl. Phys. Lett. 95, 152510 (2009).

89. R. Comes , H. Liu , M. Khokhlov , R. Kasica , J. Lu , and S.A. Wolf : Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012).

90. W. Lee , H. Han , A. Lotnyk , M.A. Schubert , S. Senz , M. Alexe , D. Hesse , S. Baik , and U. Gösele : Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density. Nat. Nanotechnol. 3, 402 (2008).

91. S.A. Wolf , L. Jiwei , M.R. Stan , E. Chen , and D.M. Treger : The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98, 2155 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 212 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st July 2017. This data will be updated every 24 hours.