Hostname: page-component-cd4964975-g4d8c Total loading time: 0 Render date: 2023-04-02T05:56:22.021Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Co3O4 Epitaxial Formation on CoO(100)

Published online by Cambridge University Press:  21 February 2011

G. A. Carson
Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588–0304, USA
M. H. Nassir
Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588–0304, USA
M. A. Langell
Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588–0304, USA
Get access


Co3O4 epitaxies grow readily on cobalt monoxide substrates under a wide range of oxidizing pretreatment conditions. The nucleation and growth of Co3O4 on CoO(lOO) have been investigated by XPS, HREELS and LEED. Both rocksalt CoO and spinel Co3O4 share the geometric characteristic of closest packed lattice O2+ with oxygen to oxygen distances that match to within 5%. We propose a mechanism whereby the Co2+ move from octahedral CoO(100) surface sites to bridging O2- -O2-, positions that correspond to tetrahedral Co2+ sites in the spinel. Oxygen added to the surface finds its way into the near-surface region both as lattice O2-, chemically indistinguishable in CoO and Co3O4, and as excess surface oxygen. The excess oxygen, which gives an XPS binding energy of 531.6 eV and a HREELS signature at 137 meV (1100 cm-1) identifies it as a superoxo species. This species can be added and removed reversibly from the surface by annealing under oxidizing/UHV reducing conditions.

Research Article
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Henrich, V.E., Surface and Near-Surface Chemistry of Oxide Materials, edited by Dufour, L.C. and Nowotny, J. (Elsevier Science Publishers, New York, 1987), p. 23.Google Scholar
2. Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice, 2nd ed. (McGraw-Hill, Inc., New York, 1991), p. 319.Google Scholar
3. Shen, Z.-X., Allen, J.W., Lindberg, P.A.P., Dessau, D.S., Wells, B.O., Borg, A., Ellis, W., Kang, J.S., Oh, S.-J., Lindau, I. and Spicer, W.E., Phys. Rev., B 42, 1817 (1990).CrossRefGoogle Scholar
4. Henrich, V.E., Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, edited by Freund, H.-J. and Umbach, E. (Springer-Verlag, New York, 1993), 125.CrossRefGoogle Scholar
5. Brundle, C.R., Chuang, T.J. and Rice, D.W., Surface Sci., 60, 286 (1976).CrossRefGoogle Scholar
6. Oku, M. and Sato, Y., Appl. Surface Sci., 55, 37 (1992).CrossRefGoogle Scholar
7. Klingenberg, B., Grellner, F., Borgmann, D. and Wedler, G., Surface Sci., 296, 374 (1993).CrossRefGoogle Scholar
8. Jnioui, A., Alnot, M., Ehrhardt, J.J., Amariglio, A. and Amariglio, H., J. Chim. Phys., 83, 323 (1986).CrossRefGoogle Scholar
9. Escalona-Platero, E., Spoto, G., Coluccia, S. and Zecchina, A., Langmuir, 3, 291 (1987).CrossRefGoogle Scholar
10. Langell, M.A., Surface Sci., 186, 323 (1987).CrossRefGoogle Scholar
11. Nassir, M.H. and Langell, M.A., Solid State Commun., 92, 791 (1994).CrossRefGoogle Scholar
12. Tyuliev, G. and Angelov, S., Appl. Surface Sci., 32, 381 (1988).CrossRefGoogle Scholar
13. Scofield, J.H., J. Electron Spectrosc. Rel. Phenom., 8, 129 (1976).CrossRefGoogle Scholar
14. Nassir, M.H. and Langell, M.A., Surface Sci., submitted.Google Scholar
15. Wulser, K.W. and Langell, M.A., Electron, J. Spectrosc. Rel. Phenom., 59, 223 (1992).CrossRefGoogle Scholar
16. Grimblot, J., Bonnelle, J.P. and Beaufils, J.P., Electron, J. Spectrosc. Rel. Phenom., 8, 437 (1976).CrossRefGoogle Scholar
17. Marcus-Saubat, B., Beaufils, J.P. and Barbaux, Y., J. Chim. Phys., 83, 317 (1986).CrossRefGoogle Scholar