Hostname: page-component-5d59c44645-lfgmx Total loading time: 0 Render date: 2024-02-29T07:57:20.172Z Has data issue: false hasContentIssue false

Elastic and Plastic Properties of Mo3Si Measured by Nanoindentation

Published online by Cambridge University Press:  21 March 2011

J. G. Swadener
Affiliation:
Oak Ridge National Laboratory, Metal and Ceramics Division, P. O. Box 2008, Oak Ridge, TN 37831
Isa Rosales
Affiliation:
Oak Ridge National Laboratory, Metal and Ceramics Division, P. O. Box 2008, Oak Ridge, TN 37831
Joachim H. Schneibel
Affiliation:
Oak Ridge National Laboratory, Metal and Ceramics Division, P. O. Box 2008, Oak Ridge, TN 37831
Get access

Abstract

Single crystal Mo3Si specimens were grown and tested at room temperature using established nanoindentation techniques at various crystallographic orientations. The indentation modulus and hardness were obtained for loads that were large enough to determine bulk properties, yet small enough to avoid cracking in the specimens. From the indentation modulus results, anisotropic elastic constants were determined. As load was initially increased to approximately 1.5 mN, the hardness exhibited a sudden drop that corresponded to a jump in displacement. The resolved shear stress that was determined from initial yielding was 10–15% of the shear modulus, but 3 to 4 times the value obtained from the bulk hardness. Non-contact atomic force microscopy images in the vicinity of indents revealed features consistent with {100}(010) slip.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berczik, D. M., United States Patent 5, 595, 616 (1997).Google Scholar
2. Berczik, D. M., United States Patent 5, 693, 156 (1997).Google Scholar
3. Schneibel, J. H., Kramer, M. J., Ünal, Ö. and Wright, R. N., Intermatallics, in press.Google Scholar
4. Meyer, M. K., Kramer, M. J. and Akinca, M. [sic], Intermetallics, 4, 273 (1996).10.1016/0966-9795(95)00048-8Google Scholar
5. Meyer, M. K., Thom, A. J. and Akinc, M., Intermetallics, 7, 153 (1999).10.1016/S0966-9795(98)00058-2Google Scholar
6. Chang, C. S. and Pope, D. P., in High-temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P. and Stiegler, J. D. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA 1991), p. 745.Google Scholar
7. Murugesh, L., Venkteswara Rao, K. T. and Ritchie, R. O., Scripta Metall. Mater. 29, 1107 (1993).Google Scholar
8. Raj, S.V., Whittenberg, J. D., Zeumer, B. and Sauthoff, G., Intermetallics, 7, 743 (1999).10.1016/S0966-9795(98)00095-8Google Scholar
9. Rosales, I. and Schneibel, J. H., Intermetallics, 8, 885 (2000).Google Scholar
10. Raj, S.V., Mater. Sci. Eng. A201, 229 (1995).10.1016/0921-5093(95)09767-8Google Scholar
11. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).Google Scholar
12. Swadener, J. G. and Pharr, G. M., in Thin Films: Stresses and Mechanical Properties VII, edited by Vinci, R., Kraft, O., Moody, N., and Shaffer, E. VIII (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA 2000), p. 525.Google Scholar
13. Willis, J. R., J. Mech. Phys. Solids 14, 163 (1966).10.1016/0022-5096(66)90036-6Google Scholar
14. Vlassak, J. J. and Nix, W. D., Phil. Mag. A, 67, 1045 (1993).10.1080/01418619308224756Google Scholar
15. Swadener, J. G. and Pharr, G. M., Phil. Mag. A, in press.Google Scholar
16. King, R. B., Int. J. Solids Structures 3, 1657 (1988).Google Scholar
17. Page, T. F., Oliver, W. C. and McHargue, C. J., J. Mater. Res. 7, 450 (1992).10.1557/JMR.1992.0450Google Scholar
18. Tabor, D., The Hardness of Metals (Clarendon Press, Oxford 1951).Google Scholar