Hostname: page-component-f7d5f74f5-47svn Total loading time: 0 Render date: 2023-10-03T21:12:12.239Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Lead Sulfide Quantum Dot Synthesis, Deposition, and Temperature Dependence Studies of the Stokes Shift

Published online by Cambridge University Press:  19 April 2012

Joanna S. Wang
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Bruno Ullrich
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Gail J. Brown
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Get access

Abstract

We investigated the temperature dependence of the Stokes shift of PbS quantum dots (diameter 4.7 nm) deposited from solution on glass using a specially designed apparatus. By measuring the thermal alteration of the optical absorbance and photoluminescence in the range of 5 K – 300 K, we demonstrate that the Stokes shift shrinks from 135 meV at 5 K to 62 meV at 300 K. Extrapolation of the data presented predict an elimination temperature of the Stokes shift of about 460 K, corresponding to the thermal energy of the sum of prominent PbS phonon energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Peterson, J. J. and Krauss, T. D., Nano Lett. 6, 510 (2006).CrossRefGoogle Scholar
2. Turyanska, L., Patanè, A., Henini, M., Hennequin, B. and Thomas, N. R., Appl. Phys. Lett. 90, 101913 (2007).CrossRefGoogle Scholar
3. Gaponenko, M. S., Lutich, A. A., Tolstik, N. A., Onushchenko, A. A., Malyarevich, A. M., Petrov, E. P. and Yumashev, K. V., Phys. Rev. B 82, 125320 (2010).CrossRefGoogle Scholar
4. Ullrich, B., Xiao, X. Y., and Brown, G. J., J. Appl. Phys. 108, 013525 (2010).CrossRefGoogle Scholar
5. Ullrich, B., Wang, J. S., and Brown, G. J., Appl. Phys. Lett. 99, 081901 (2011).CrossRefGoogle Scholar
6. Liu, C., Kwon, K., and Heo, J., J. Non-Cryst. Solids 355, 1880 (2009).CrossRefGoogle Scholar
7. Zhang, J., Jiang, X., J. Phys. Chem. B 112, 9557 (2008).CrossRefGoogle Scholar
8. Zhang, J. and Jiang, X., Appl. Phys. Lett. 92, 141108 (2008).CrossRefGoogle Scholar
9. Dantas, N. O., de Paula, P. M. N., Silva, R. S., López-Richard, V., and Marques, G. E., J. Appl. Phys. 109, 024308 (2011).CrossRefGoogle Scholar
10. Rakovich, Y. P., Donegan, J. F., Vasilevskiy, M. I., and Rogach, A. L., Phys. Stat. Sol. A 206, 2497 (2009).CrossRefGoogle Scholar
11. Hines, M. A. and Scholes, G. D., Adv. Mater. 15(21), 1844, (2003).CrossRefGoogle Scholar
12. Vainshtein, I. A., Zatsepin, A. F., and Kortov, V. S., Phys. Solid State 41, 907 (1999).CrossRefGoogle Scholar
13. Madelung, O., Semiconductors: Data Handbook, 3 rd ed. (Springer, Berlin, 2004).CrossRefGoogle Scholar
14. Fernée, M. J., Thomsen, E., Jensen, P., and Rubinsztein-Dunlop, H., Nanotech 17, 956 (2008).CrossRefGoogle Scholar
15. Lobo, A., Muller, T., Nagel, M., Borchert, H., Hickey, S.G., and Weller, H., J. Phys. Chem. C 109, 17422 (2005).CrossRefGoogle Scholar
16. Abel, K. A., Shan, J., Boyer, J.-C., Harris, F., and van Veggel, F. C. J. M., Chem. Mater. 20, 3794 (2008).CrossRefGoogle Scholar