Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ms7nj Total loading time: 0.57 Render date: 2022-08-08T20:01:06.911Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Lead Sulfide Quantum Dot Synthesis, Deposition, and Temperature Dependence Studies of the Stokes Shift

Published online by Cambridge University Press:  19 April 2012

Joanna S. Wang
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Bruno Ullrich
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Gail J. Brown
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Get access

Abstract

We investigated the temperature dependence of the Stokes shift of PbS quantum dots (diameter 4.7 nm) deposited from solution on glass using a specially designed apparatus. By measuring the thermal alteration of the optical absorbance and photoluminescence in the range of 5 K – 300 K, we demonstrate that the Stokes shift shrinks from 135 meV at 5 K to 62 meV at 300 K. Extrapolation of the data presented predict an elimination temperature of the Stokes shift of about 460 K, corresponding to the thermal energy of the sum of prominent PbS phonon energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peterson, J. J. and Krauss, T. D., Nano Lett. 6, 510 (2006).CrossRefGoogle Scholar
2. Turyanska, L., Patanè, A., Henini, M., Hennequin, B. and Thomas, N. R., Appl. Phys. Lett. 90, 101913 (2007).CrossRefGoogle Scholar
3. Gaponenko, M. S., Lutich, A. A., Tolstik, N. A., Onushchenko, A. A., Malyarevich, A. M., Petrov, E. P. and Yumashev, K. V., Phys. Rev. B 82, 125320 (2010).CrossRefGoogle Scholar
4. Ullrich, B., Xiao, X. Y., and Brown, G. J., J. Appl. Phys. 108, 013525 (2010).CrossRefGoogle Scholar
5. Ullrich, B., Wang, J. S., and Brown, G. J., Appl. Phys. Lett. 99, 081901 (2011).CrossRefGoogle Scholar
6. Liu, C., Kwon, K., and Heo, J., J. Non-Cryst. Solids 355, 1880 (2009).CrossRefGoogle Scholar
7. Zhang, J., Jiang, X., J. Phys. Chem. B 112, 9557 (2008).CrossRefGoogle Scholar
8. Zhang, J. and Jiang, X., Appl. Phys. Lett. 92, 141108 (2008).CrossRefGoogle Scholar
9. Dantas, N. O., de Paula, P. M. N., Silva, R. S., López-Richard, V., and Marques, G. E., J. Appl. Phys. 109, 024308 (2011).CrossRefGoogle Scholar
10. Rakovich, Y. P., Donegan, J. F., Vasilevskiy, M. I., and Rogach, A. L., Phys. Stat. Sol. A 206, 2497 (2009).CrossRefGoogle Scholar
11. Hines, M. A. and Scholes, G. D., Adv. Mater. 15(21), 1844, (2003).CrossRefGoogle Scholar
12. Vainshtein, I. A., Zatsepin, A. F., and Kortov, V. S., Phys. Solid State 41, 907 (1999).CrossRefGoogle Scholar
13. Madelung, O., Semiconductors: Data Handbook, 3 rd ed. (Springer, Berlin, 2004).CrossRefGoogle Scholar
14. Fernée, M. J., Thomsen, E., Jensen, P., and Rubinsztein-Dunlop, H., Nanotech 17, 956 (2008).CrossRefGoogle Scholar
15. Lobo, A., Muller, T., Nagel, M., Borchert, H., Hickey, S.G., and Weller, H., J. Phys. Chem. C 109, 17422 (2005).CrossRefGoogle Scholar
16. Abel, K. A., Shan, J., Boyer, J.-C., Harris, F., and van Veggel, F. C. J. M., Chem. Mater. 20, 3794 (2008).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lead Sulfide Quantum Dot Synthesis, Deposition, and Temperature Dependence Studies of the Stokes Shift
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Lead Sulfide Quantum Dot Synthesis, Deposition, and Temperature Dependence Studies of the Stokes Shift
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Lead Sulfide Quantum Dot Synthesis, Deposition, and Temperature Dependence Studies of the Stokes Shift
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *